A366598 a(n) = greatest number of vertices having the same degree in the distance graph of the partitions of n.
1, 2, 2, 2, 4, 4, 7, 9, 11, 14, 19, 17, 27, 32, 50, 62, 82, 94, 132, 138, 176, 198, 238, 288, 368
Offset: 1
Examples
Enumerate the 7 partitions (= vertices) of 5 as follows: 1: 5 2: 4,1 3: 3,2 4: 3,1,1 5: 2,2,1 6: 2,1,1,1 7: 1,1,1,1,1 Call q a neighbor of p if d(p,q)=2. The set of neighbors for vertex k, for k = 1..7, is given by vertex 1: {2} vertex 2: {1,3,4} vertex 3: {2,4,5} vertex 4: {2,3,5,6} vertex 5: {3,4,6} vertex 6: {4,5,7} vertex 7: {6} The number of vertices having degrees 1,2,3,4 are 2,0,4,1, respectively; the greatest of these is 4, so that a(5) = 4.
Programs
-
Mathematica
c[n_] := PartitionsP[n]; q[n_, k_] := q[n, k] = IntegerPartitions[n][[k]]; r[n_, k_] := r[n, k] = Join[q[n, k], ConstantArray[0, n - Length[q[n, k]]]]; d[u_, v_] := Total[Abs[u - v]]; s[n_, k_] := Select[Range[c[n]], d[r[n, k], r[n, #]] == 2 &] s1[n_] := s1[n] = Table[s[n, k], {k, 1, c[n]}] m[n_] := m[n] = Map[Length, s1[n]] m1[n_] := m1[n] = Max[m[n]]; (* A366429 *) t1 = Join[{1}, Table[Count[m[n], i], {n, 2, 25}, {i, 1, m1[n]}]] Map[Max, t1]
Comments