cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366610 Number of successive occurrences of the same first digits in A366585.

Original entry on oeis.org

1, 1, 1, 1, 4, 5, 4, 2, 2, 2, 2, 1, 1, 97, 50, 34, 25, 20, 17, 14, 13, 11, 995, 500, 334, 250, 200, 167, 143, 125, 111, 9996, 5000, 3334, 2500, 2000, 1667, 1428, 1250, 1112, 99992, 50000, 33334, 25000, 20000, 16667, 14286, 12500, 11111, 999995, 500000, 333334, 250000, 200000, 166667, 142857
Offset: 1

Views

Author

Tamas Sandor Nagy, Oct 14 2023

Keywords

Examples

			a(6) = 5 because in A366585, the sixth run of same first digit of the terms lasts through five terms: 2021, 2223, 2425, 2627, 2829, each beginning with 2.
		

Crossrefs

Cf. A366585.

Programs

  • PARI
    lista(nn) = my(list=List(), k=1); while (k < nn, my(s="", n=digits(k)[1]); for (j=1, n, s = concat(s, Str(k+j-1));); listput(list, eval(s)); k += n;); my(w = apply(x->digits(x)[1], list)); my(list=List(), last=w[1], nb=1); for (i=2, #w, if (w[i] == last, nb++, listput(list, nb); last=w[i]; nb=1;);); Vec(list, #list-1); \\ Michel Marcus, Oct 15 2023
    
  • Python
    from itertools import islice
    def A366610_gen(): # generator of terms
        a, c = 1, 0
        while (c:=c+1):
            yield c
            c, r = divmod((w:=((t:=int(str(a:=a+int(str(a)[0]))[0]))+1)*10**(len(str(a))-1)-1)-a,t)
            a = w-r
    A366610_list = list(islice(A366610_gen(),30)) # Chai Wah Wu, Nov 04 2023

Extensions

More terms from Michel Marcus, Oct 15 2023