A366610 Number of successive occurrences of the same first digits in A366585.
1, 1, 1, 1, 4, 5, 4, 2, 2, 2, 2, 1, 1, 97, 50, 34, 25, 20, 17, 14, 13, 11, 995, 500, 334, 250, 200, 167, 143, 125, 111, 9996, 5000, 3334, 2500, 2000, 1667, 1428, 1250, 1112, 99992, 50000, 33334, 25000, 20000, 16667, 14286, 12500, 11111, 999995, 500000, 333334, 250000, 200000, 166667, 142857
Offset: 1
Examples
a(6) = 5 because in A366585, the sixth run of same first digit of the terms lasts through five terms: 2021, 2223, 2425, 2627, 2829, each beginning with 2.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..2000
Crossrefs
Cf. A366585.
Programs
-
PARI
lista(nn) = my(list=List(), k=1); while (k < nn, my(s="", n=digits(k)[1]); for (j=1, n, s = concat(s, Str(k+j-1));); listput(list, eval(s)); k += n;); my(w = apply(x->digits(x)[1], list)); my(list=List(), last=w[1], nb=1); for (i=2, #w, if (w[i] == last, nb++, listput(list, nb); last=w[i]; nb=1;);); Vec(list, #list-1); \\ Michel Marcus, Oct 15 2023
-
Python
from itertools import islice def A366610_gen(): # generator of terms a, c = 1, 0 while (c:=c+1): yield c c, r = divmod((w:=((t:=int(str(a:=a+int(str(a)[0]))[0]))+1)*10**(len(str(a))-1)-1)-a,t) a = w-r A366610_list = list(islice(A366610_gen(),30)) # Chai Wah Wu, Nov 04 2023
Extensions
More terms from Michel Marcus, Oct 15 2023