cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A366630 a(n) = phi(6^n+1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 6, 36, 180, 1296, 6000, 41472, 230496, 1580800, 8359200, 58579200, 310968900, 2175102720, 10971642240, 76065091200, 351048600000, 2811459796992, 14508487949472, 88870766837760, 522016066337712, 3564233663616000, 17479898551382400, 128060205344805888
Offset: 0

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[6^Range[0, 22] + 1] (* Paul F. Marrero Romero, Oct 17 2023 *)
  • PARI
    {a(n) = eulerphi(6^n+1)}

Formula

a(n) = A000010(A062394(n)). - Paul F. Marrero Romero, Oct 17 2023

A366629 Sum of the divisors of 6^n+1.

Original entry on oeis.org

3, 8, 38, 256, 1298, 9792, 52136, 338580, 1778436, 11889152, 62367272, 414625216, 2178461956, 15224775552, 80673299432, 611106029568, 2830769440776, 19344856702976, 115255634181184, 696800841097536, 3748220725527432, 27388329197137920, 135183433256806480
Offset: 0

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Examples

			a(3)=256 because 6^3+1 has divisors {1, 7, 31, 217}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[sigma](6^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[1, 6^Range[0, 30] + 1] (* Paolo Xausa, Jul 03 2024 *)

Formula

a(n) = sigma(6^n+1) = A000203(A062394(n)).

A366628 Number of divisors of 6^n+1.

Original entry on oeis.org

2, 2, 2, 4, 2, 8, 8, 12, 4, 8, 8, 4, 4, 16, 8, 32, 8, 8, 64, 8, 8, 48, 16, 8, 16, 16, 16, 32, 32, 16, 512, 4, 8, 64, 8, 1536, 32, 16, 8, 512, 32, 16, 128, 4, 8, 128, 32, 4, 128, 64, 64, 256, 16, 32, 1024, 192, 64, 128, 8, 4, 64, 8, 4, 768, 8, 256, 2048, 32, 32
Offset: 0

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Examples

			a(3)=4 because 6^3+1 has divisors {1, 7, 31, 217}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](6^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[0, 6^Range[0, 70] + 1] (* Paolo Xausa, Apr 19 2025 *)
  • PARI
    a(n) = numdiv(6^n+1);

Formula

a(n) = sigma0(6^n+1) = A000005(A062394(n)).

A366609 Smallest prime dividing 4^n + 1.

Original entry on oeis.org

2, 5, 17, 5, 257, 5, 17, 5, 65537, 5, 17, 5, 97, 5, 17, 5, 641, 5, 17, 5, 257, 5, 17, 5, 193, 5, 17, 5, 257, 5, 17, 5, 274177, 5, 17, 5, 97, 5, 17, 5, 65537, 5, 17, 5, 257, 5, 17, 5, 641, 5, 17, 5, 257, 5, 17, 5, 449, 5, 17, 5, 97, 5, 17, 5, 59649589127497217
Offset: 0

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Crossrefs

A366671 Smallest prime dividing 8^n + 1.

Original entry on oeis.org

2, 3, 5, 3, 17, 3, 5, 3, 97, 3, 5, 3, 17, 3, 5, 3, 193, 3, 5, 3, 17, 3, 5, 3, 97, 3, 5, 3, 17, 3, 5, 3, 641, 3, 5, 3, 17, 3, 5, 3, 97, 3, 5, 3, 17, 3, 5, 3, 193, 3, 5, 3, 17, 3, 5, 3, 97, 3, 5, 3, 17, 3, 5, 3, 769, 3, 5, 3, 17, 3, 5, 3, 97, 3, 5, 3, 17, 3, 5
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Comments

a(n) = 3 if n is odd. a(n) = 5 if n == 2 (mod 4). - Robert Israel, Nov 20 2023

Crossrefs

Programs

  • Maple
    P1000:= mul(ithprime(i),i= 4..1000):
    f:= proc(n) local t;
      if n::odd then return 3 elif n mod 4 = 2 then return 5 fi;
      t:= igcd(8^n+1,P1000);
      if t <> 1 then min(numtheory:-factorset(t)) else min(numtheory:-factorset(8^n+1)) fi
    end proc:
    map(f, [$0..100]); # Robert Israel, Nov 20 2023
  • Mathematica
    Table[FactorInteger[8^n + 1][[1,1]], {n, 0, 78}] (* Paul F. Marrero Romero, Oct 20 2023 *)
  • Python
    from sympy import primefactors
    def A366671(n): return min(primefactors((1<<3*n)+1)) # Chai Wah Wu, Oct 16 2023

Formula

a(n) = A020639(A062395(n)). - Paul F. Marrero Romero, Oct 20 2023
a(n) = A002586(3*n) for n >= 1. - Robert Israel, Nov 20 2023
Showing 1-5 of 5 results.