cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A366694 G.f. satisfies A(x) = (1 + x)^2 + x*A(x)^2.

Original entry on oeis.org

1, 3, 7, 23, 88, 363, 1576, 7091, 32768, 154588, 741442, 3604495, 17721394, 87960004, 440165522, 2218289051, 11248850578, 57354875692, 293860786178, 1512169500356, 7811933144432, 40499933496818, 210643657689644, 1098802033533295, 5747266778089846
Offset: 0

Views

Author

Seiichi Manyama, Oct 16 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(2*(k+1), n-k)*binomial(2*k, k)/(k+1));

Formula

G.f.: A(x) = 2*(1+x)^2 / (1+sqrt(1-4*x*(1+x)^2)).
a(n) = Sum_{k=0..n} binomial(2*(k+1),n-k) * binomial(2*k,k)/(k+1).

A381939 G.f. A(x) satisfies A(x) = (1 + x)^3 * B(x*A(x)), where B(x) is the g.f. of A001764.

Original entry on oeis.org

1, 4, 13, 74, 568, 4872, 44576, 425936, 4199616, 42404096, 436238592, 4556085248, 48179319808, 514825553408, 5550284218368, 60296483084288, 659417378381824, 7253858445852672, 80209754567786496, 891027699137609728, 9939286070426992640, 111286739309529858048
Offset: 0

Views

Author

Seiichi Manyama, Mar 10 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(4*k+1, k)*binomial(3*k+3, n-k)/(4*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(4*k+1,k) * binomial(3*k+3,n-k)/(4*k+1).
a(n) = A367641(n) + A367641(n-1).

A381942 G.f. A(x) satisfies A(x) = (1 + x)^3 * B(x*A(x)), where B(x) is the g.f. of A002293.

Original entry on oeis.org

1, 4, 14, 96, 905, 9550, 107552, 1265372, 15364920, 191090255, 2421646300, 31157939594, 405932855044, 5344301858465, 70990458721140, 950263442420120, 12805328720666376, 173574888045493536, 2365049262321662145, 32374714068988416170, 445017678283209218750, 6140131349497715896244
Offset: 0

Views

Author

Seiichi Manyama, Mar 10 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(5*k+1, k)*binomial(3*k+3, n-k)/(5*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(5*k+1,k) * binomial(3*k+3,n-k)/(5*k+1).
Showing 1-3 of 3 results.