cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A366395 a(n) = Sum_{k=1..n} (-1)^(k-1) * binomial(floor(n/k)+2,3).

Original entry on oeis.org

1, 3, 10, 16, 32, 49, 78, 100, 152, 194, 261, 318, 410, 489, 631, 717, 871, 1014, 1205, 1351, 1617, 1806, 2083, 2300, 2641, 2903, 3333, 3612, 4048, 4450, 4947, 5289, 5923, 6367, 7041, 7548, 8252, 8805, 9683, 10245, 11107, 11873, 12820, 13497, 14719, 15526, 16655
Offset: 1

Views

Author

Seiichi Manyama, Oct 24 2023

Keywords

Crossrefs

Partial sums of A365007.
Cf. A364970.

Programs

  • Mathematica
    Array[Sum[(-1)^(k - 1)*Binomial[Floor[#/k] + 2, 3], {k, #}] &, 56] (* Michael De Vlieger, Oct 25 2023 *)
  • PARI
    a(n) = sum(k=1, n, (-1)^(k-1)*binomial(n\k+2, 3));

Formula

a(n) = Sum_{k=1..n} binomial(k+1,2) * (floor(n/k) mod 2).
G.f.: -1/(1-x) * Sum_{k>=1} (-x)^k/(1-x^k)^3 = 1/(1-x) * Sum_{k>=1} binomial(k+1,2) * x^k/(1+x^k).

A366659 a(n) = Sum_{k=1..n} (-1)^(k-1) * binomial(floor(n/k)+3,4).

Original entry on oeis.org

1, 4, 15, 30, 66, 115, 200, 295, 471, 659, 946, 1259, 1715, 2194, 2920, 3591, 4561, 5585, 6916, 8216, 10082, 11823, 14124, 16389, 19350, 22174, 26004, 29435, 33931, 38445, 43902, 48925, 55767, 61941, 69831, 77275, 86415, 94968, 106094, 115874, 128216, 140214, 154405
Offset: 1

Views

Author

Seiichi Manyama, Oct 24 2023

Keywords

Crossrefs

Partial sums of A366813.

Programs

  • Mathematica
    Array[Sum[(-1)^(k - 1)*Binomial[Floor[#/k] + 3, 4], {k, #}] &, 56] (* Michael De Vlieger, Oct 25 2023 *)
  • PARI
    a(n) = sum(k=1, n, (-1)^(k-1)*binomial(n\k+3, 4));

Formula

a(n) = Sum_{k=1..n} binomial(k+2,3) * (floor(n/k) mod 2).
G.f.: -1/(1-x) * Sum_{k>=1} (-x)^k/(1-x^k)^4 = 1/(1-x) * Sum_{k>=1} binomial(k+2,3) * x^k/(1+x^k).

A366814 a(n) = Sum_{d|n} (-1)^(n/d-1) * binomial(d+3,4).

Original entry on oeis.org

1, 4, 16, 29, 71, 115, 211, 289, 511, 649, 1002, 1253, 1821, 2174, 3146, 3505, 4846, 5605, 7316, 8099, 10852, 11653, 14951, 16333, 20546, 21935, 27916, 28904, 35961, 38620, 46377, 48113, 59922, 61204, 74096, 77024, 91391, 93959, 113766, 114059, 135752, 140654, 163186
Offset: 1

Views

Author

Seiichi Manyama, Oct 24 2023

Keywords

Crossrefs

Partial sums give A366723.

Programs

  • Mathematica
    Table[DivisorSum[n, (-1)^(n/# - 1)*Binomial[# + 3, 4] &], {n, 56}] (* Michael De Vlieger, Oct 25 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (-1)^(n/d-1)*binomial(d+3, 4));

Formula

G.f.: -Sum_{k>=1} (-x)^k/(1-x^k)^5 = Sum_{k>=1} binomial(k+3,4) * x^k/(1+x^k).

A366939 a(n) = Sum_{k=1..n} (-1)^(k-1) * binomial(k+3,4) * floor(n/k).

Original entry on oeis.org

1, -3, 13, -26, 45, -70, 141, -228, 283, -366, 636, -879, 942, -1232, 1914, -2331, 2515, -3090, 4226, -5313, 5539, -6114, 8837, -10558, 9988, -11947, 15969, -17705, 18256, -20364, 26013, -30592, 29330, -31874, 42222, -47034, 44357, -49602, 64164, -69115, 66637, -74017
Offset: 1

Views

Author

Seiichi Manyama, Oct 29 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=1, n, (-1)^(k-1)*binomial(k+3, 4)*(n\k));
    
  • Python
    from math import isqrt
    from sympy import rf
    def A366939(n): return ((rf(s:=isqrt(m:=n>>1),3)*(s+1)*((s**2<<2)+13*s+8)<<3)-rf(t:=isqrt(n),5)*(t+1)+sum((((q:=m//w)+1)*(-q*(q+2)*((q**2<<2)+13*q+8)-5*w*(w+1)*((r:=w<<1)+1)*(r+3))<<3) for w in range(1,s+1))+sum(rf(q:=n//w,5)+5*(q+1)*rf(w,4) for w in range(1,t+1)))//120 # Chai Wah Wu, Oct 29 2023

Formula

G.f.: 1/(1-x) * Sum_{k>=1} x^k/(1+x^k)^5 = -1/(1-x) * Sum_{k>=1} binomial(k+3,4) * (-x)^k/(1-x^k).
Showing 1-4 of 4 results.