A366748 Numbers k such that (sum of odd prime indices of k) = (sum of even prime indices of k).
1, 12, 70, 90, 112, 144, 286, 325, 462, 520, 525, 594, 646, 675, 832, 840, 1045, 1080, 1326, 1334, 1344, 1666, 1672, 1728, 1900, 2142, 2145, 2294, 2465, 2622, 2695, 2754, 3040, 3432, 3465, 3509, 3526, 3900, 3944, 4186, 4255, 4312, 4455, 4845, 4864, 4900, 4982
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 1: {} 12: {1,1,2} 70: {1,3,4} 90: {1,2,2,3} 112: {1,1,1,1,4} 144: {1,1,1,1,2,2} 286: {1,5,6} 325: {3,3,6} 462: {1,2,4,5} 520: {1,1,1,3,6} 525: {2,3,3,4} 594: {1,2,2,2,5} 646: {1,7,8} 675: {2,2,2,3,3} 832: {1,1,1,1,1,1,6} 840: {1,1,1,2,3,4} For example, 525 has prime indices {2,3,3,4}, and 3+3 = 2+4, so 525 is in the sequence.
Crossrefs
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[1000], Total[Select[prix[#],OddQ]]==Total[Select[prix[#],EvenQ]]&]
Comments