A366750 Number of strict integer partitions of n into odd parts with a common divisor > 1.
0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 2, 1, 0, 2, 1, 1, 3, 1, 0, 2, 0, 1, 3, 1, 0, 3, 2, 1, 4, 1, 1, 5, 0, 1, 5, 1, 2, 5, 1, 1, 5, 2, 2, 6, 0, 1, 9, 1, 0, 9, 0, 3, 9, 1, 1, 9, 5, 1, 11, 1, 0, 15, 1, 2, 13, 1, 5, 14, 0, 1, 18
Offset: 0
Keywords
Examples
The a(n) partitions for n = 3, 24, 30, 42, 45, 57, 60: (3) (15,9) (21,9) (33,9) (45) (57) (51,9) (21,3) (25,5) (35,7) (33,9,3) (45,9,3) (55,5) (27,3) (39,3) (21,15,9) (27,21,9) (57,3) (27,15) (25,15,5) (33,15,9) (33,27) (27,15,3) (33,21,3) (35,25) (39,15,3) (39,21) (45,15) (27,21,9,3) (33,15,9,3)
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n], And@@OddQ/@#&&UnsameQ@@#&&GCD@@#>1&]], {n,0,30}]
-
Python
from math import gcd from sympy.utilities.iterables import partitions def A366750(n): return sum(1 for p in partitions(n) if all(d==1 for d in p.values()) and all(d&1 for d in p) and gcd(*p)>1) # Chai Wah Wu, Nov 02 2023
Extensions
More terms from Chai Wah Wu, Nov 02 2023