cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A366760 a(n) = phi(n!+1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 1, 2, 6, 20, 110, 612, 4970, 39600, 337680, 3298900, 39916800, 442155168, 6151996372, 83387930692, 1282826630160, 19089488332800, 355148307803520, 5427568925856000, 119931789135468100, 2432901890279317572, 49902667163053013232, 1073067539495604750240
Offset: 0

Views

Author

Sean A. Irvine, Oct 20 2023

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[Range[0,25]!+1] (* Paolo Xausa, Oct 21 2023 *)
  • PARI
    {a(n) = eulerphi(n!+1)}
    
  • Python
    from math import factorial
    from sympy import totient
    def A366760(n): return totient(factorial(n)+1) # Chai Wah Wu, Oct 20 2023

Formula

a(n) = A000010(A038507(n)).

A366810 a(n) = phi(prime(n)#-1) where phi is the Euler totient function and p# is the product of all the primes from 2 to p inclusive.

Original entry on oeis.org

1, 4, 28, 180, 2308, 30028, 502080, 9458176, 215401680, 6387798300, 200559384576, 7369724839680, 304250263527208, 13082668722666720, 611670442764457840, 32588685419205242880, 1922760350056947598944, 117190066177425882515040, 7810108077410021826572976
Offset: 1

Views

Author

Sean A. Irvine, Oct 23 2023

Keywords

Crossrefs

Programs

  • Maple
    seq(numtheory[phi](mul(ithprime(k), k=1..n)-1), n=1..30);
  • PARI
    a(n)=eulerphi(prod(k=1,n,prime(k))-1)

Formula

a(n) = A000010(A057588(n)).
Showing 1-2 of 2 results.