cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A366789 Fully multiplicative with a(p) = oddpart(primepi(p)).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 5, 1, 3, 1, 3, 1, 7, 1, 1, 3, 1, 5, 9, 1, 9, 3, 1, 1, 5, 3, 11, 1, 5, 7, 3, 1, 3, 1, 3, 3, 13, 1, 7, 5, 3, 9, 15, 1, 1, 9, 7, 3, 1, 1, 15, 1, 1, 5, 17, 3, 9, 11, 1, 1, 9, 5, 19, 7, 9, 3, 5, 1, 21, 3, 9, 1, 5, 3, 11, 3, 1, 13, 23, 1, 21, 7, 5, 5, 3, 3, 3, 9, 11, 15, 3, 1, 25, 1, 5, 9
Offset: 1

Views

Author

Antti Karttunen, Oct 23 2023

Keywords

Crossrefs

Programs

  • Mathematica
    {1}~Join~Array[#/2^IntegerExponent[#, 2] &@ Apply[Times, PrimePi[#1]^#2 & @@@ FactorInteger[#]] &, 120, 2] (* Michael De Vlieger, Oct 23 2023 *)
  • PARI
    A000265(n) = (n>>valuation(n,2));
    A366789(n) = { my(f=factor(n)); prod(k=1, #f~, A000265(primepi(f[k, 1]))^f[k, 2]); };

Formula

a(n) = A000265(A003963(n)).

A366792 Lexicographically earliest infinite sequence such that a(i) = a(j) => A365425(i) = A365425(j) and A366787(i) = A366787(j) for all i, j >= 0.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 2, 1, 8, 5, 9, 3, 10, 6, 3, 2, 11, 7, 7, 4, 12, 2, 13, 1, 14, 8, 15, 5, 16, 9, 5, 3, 17, 10, 11, 6, 18, 3, 19, 2, 20, 11, 10, 7, 21, 7, 22, 4, 18, 12, 23, 2, 22, 13, 4, 1, 24, 14, 25, 8, 26, 15, 8, 5, 27, 16, 20, 9, 28, 5, 29, 3, 30, 17, 17, 10, 31, 11, 32, 6, 33, 18, 34, 3
Offset: 0

Views

Author

Antti Karttunen, Oct 23 2023

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A365425(n), A366787(n)].
Restricted growth sequence transform of the function f(n) = A366790(A163511(n)).
For all i, j >= 0: a(i) = a(j) => A366788(i) = A366788(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n>>valuation(n,2));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
    A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    A365425(n) = A046523(A000265(A163511(n)));
    A366789(n) = { my(f=factor(n)); prod(k=1, #f~, A000265(primepi(f[k, 1]))^f[k, 2]); };
    A366787(n) = A366789(A163511(n));
    A366792aux(n) = [A365425(n), A366787(n)];
    v366792 = rgs_transform(vector(1+up_to,n,A366792aux(n-1)));
    A366792(n) = v366792[1+n];

Formula

For all n >= 1, a(n) = a(2*n) = a(A000265(n)).
Showing 1-2 of 2 results.