A366792 Lexicographically earliest infinite sequence such that a(i) = a(j) => A365425(i) = A365425(j) and A366787(i) = A366787(j) for all i, j >= 0.
1, 1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 2, 1, 8, 5, 9, 3, 10, 6, 3, 2, 11, 7, 7, 4, 12, 2, 13, 1, 14, 8, 15, 5, 16, 9, 5, 3, 17, 10, 11, 6, 18, 3, 19, 2, 20, 11, 10, 7, 21, 7, 22, 4, 18, 12, 23, 2, 22, 13, 4, 1, 24, 14, 25, 8, 26, 15, 8, 5, 27, 16, 20, 9, 28, 5, 29, 3, 30, 17, 17, 10, 31, 11, 32, 6, 33, 18, 34, 3
Offset: 0
Links
- Antti Karttunen, Table of n, a(n) for n = 0..65537
Programs
-
PARI
up_to = 65537; rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; A000265(n) = (n>>valuation(n,2)); A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523 A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p)); A365425(n) = A046523(A000265(A163511(n))); A366789(n) = { my(f=factor(n)); prod(k=1, #f~, A000265(primepi(f[k, 1]))^f[k, 2]); }; A366787(n) = A366789(A163511(n)); A366792aux(n) = [A365425(n), A366787(n)]; v366792 = rgs_transform(vector(1+up_to,n,A366792aux(n-1))); A366792(n) = v366792[1+n];
Formula
For all n >= 1, a(n) = a(2*n) = a(A000265(n)).
Comments