A366800 Lexicographically earliest infinite sequence such that a(i) = a(j) => A366799(i) = A366799(j) for all i, j >= 0, where A366799 is the number of divisors d of n that are not of the form 4k+2, as permuted by the Doudna sequence.
1, 1, 2, 2, 2, 2, 3, 3, 2, 2, 4, 4, 3, 3, 4, 4, 2, 2, 4, 4, 4, 4, 5, 5, 3, 3, 5, 5, 4, 4, 6, 6, 2, 2, 4, 4, 4, 4, 5, 5, 4, 4, 7, 7, 5, 5, 7, 7, 3, 3, 5, 5, 5, 5, 8, 8, 4, 4, 7, 7, 6, 6, 5, 5, 2, 2, 4, 4, 4, 4, 5, 5, 4, 4, 7, 7, 5, 5, 7, 7, 4, 4, 7, 7, 7, 7, 9, 9, 5, 5, 9, 9, 7, 7, 10, 10, 3, 3, 5, 5, 5, 5, 8, 8
Offset: 0
Keywords
Links
Programs
-
PARI
up_to = 65537; rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); }; A320111(n) = sumdiv(n,d,(2!=(d%4))); A366799(n) = A320111(A005940(1+n)); v366800 = rgs_transform(vector(1+up_to,n,A366799(n-1))); A366800(n) = v366800[1+n];
Comments