A366806 Lexicographically earliest infinite sequence such that a(i) = a(j) => A324186(i) = A324186(j) for all i, j >= 0, where A324186 is the sum of odd divisors permuted by A163511.
1, 1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 8, 1, 9, 5, 10, 3, 11, 6, 12, 2, 13, 7, 14, 4, 15, 8, 16, 1, 17, 9, 18, 5, 19, 10, 20, 3, 21, 11, 22, 6, 23, 12, 24, 2, 25, 13, 26, 7, 27, 14, 28, 4, 29, 15, 30, 8, 14, 16, 31, 1, 32, 17, 33, 9, 34, 18, 35, 5, 36, 19, 37, 10, 38, 20, 39, 3, 40, 21, 41, 11, 42, 22, 43, 6
Offset: 0
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 0..65537
Programs
-
PARI
up_to = 65537; rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; A000593(n) = sigma(n>>valuation(n, 2)); \\ From A000593 A163511(n) = if(!n,1,my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p)); A324186(n) = A000593(A163511(n)); v366806 = rgs_transform(vector(1+up_to,n,A324186(n-1))); A366806(n) = v366806[1+n];
Formula
For all n >= 1, a(n) = a(2*n) = a(A000265(n)).
Comments