cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366834 Square array read by descending antidiagonals: (-1)^n*T(n,k)/n! is the coefficient of x^(2*n+1) in the Taylor expansion of the k-th iteration of sin(x).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 12, 1, 0, 1, 4, 33, 128, 1, 0, 1, 5, 64, 731, 1872, 1, 0, 1, 6, 105, 2160, 25857, 37600, 1, 0, 1, 7, 156, 4765, 121600, 1311379, 990784, 1, 0, 1, 8, 217, 8896, 368145, 10138880, 89060065, 32333824, 1, 0, 1, 9, 288, 14903, 873936, 42807605, 1162426880, 7778778091, 1272660224, 1, 0
Offset: 0

Views

Author

Jianing Song, Oct 25 2023

Keywords

Comments

T(n,k)/n! is the coefficient of x^(2*n+1) in the Taylor expansion of the k-th iteration of sinh(x). This is most easily seen from the relation -i*sin(...sin(sin(sin(i*x)))...) = -i*sin(...sin(sin(i*sinh(x)))...) = -i*sin(...sin(i*sinh(sinh(x)))...) = ... = sinh(...sinh(sinh(sinh(x)))...).

Examples

			G.f.s of the first few rows:
n = 0: 1/(1-x);
n = 1: x/(1-x)^2;
n = 2: x/(1-x)^2 + 10*x^2/(1-x)^3;
n = 3: x/(1-x)^2 + 126*x^2/(1-x)^3 + 350*x^3/(1-x)^4:
n = 4: x/(1-x)^2 + 1870*x^2/(1-x)^3 + 20244*x^3/(1-x)^4 + 29400*x^4/(1-x)^5;
n = 5: x/(1-x)^2 + 37598*x^2/(1-x)^3 + 1198582*x^3/(1-x)^4 + 5118960*x^4/(1-x)^5 + 4851000*x^5/(1-x)^6.
The explicit formulas for the first few rows:
T(0,k) = binomial(k,0) = 1 for k = 0, 0 for k > 0;
T(1,k) = binomial(k,1) = k;
T(2,k) = binomial(k,1) + 10*binomial(k,2) = 5*k^2 - 4*k;
T(3,k) = binomial(k,1) + 126*binomial(k,2) + 350*binomial(k,3) = (175/3)*k^3 - 112*k^2 + (164/3)*k;
T(4,k) = binomial(k,1) + 1870*binomial(k,2) + 20244*binomial(k,3) + 29400*binomial(k,4) = 1225*k^4 - 3976*k^3 + 4288*k^2 - 1536*k;
T(5,k) = binomial(k,1) + 37598*binomial(k,2) + 1198582*binomial(k,3) + 5118960*binomial(k,4) + 4851000*binomial(k,5) = 40425*k^5 - 190960*k^4 + (1004696/3)*k^3 - 255552*k^2 + (213568/3)*k.
Table of terms:
Row 0: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Row 1: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
Row 2: 0, 1, 12, 33, 64, 105, 156, 217, 288, 369, 460
Row 3: 0, 1, 128, 731, 2160, 4765, 8896, 14903, 23136, 33945, 47680
Row 4: 0, 1, 1872, 25857, 121600, 368145, 873936, 1776817, 3244032, 5472225, 8687440
Row 5: 0, 1, 37600, 1311379, 10138880, 42807605, 130426016, 323774535, 698156544, 1358249385, 2442955360
Row 6: 0, 1, 990784, 89060065, 1162426880, 6937805945, 27344158016, 83303826249, 212901058560, 478937915985, 977877567040
Row 7: 0, 1, 32333824, 7778778091, 174394695680, 1487589904205, 7634965431296, 28668866786679, 87104014381056, 227079171721785, 527214112015360
Row 8: 0, 1, 1272660224, 849264442881, 33044097597440, 406373544070945, 2731282112246016, 12688038285458529, 45949019179646976, 139088689115885505, 367745105831952640
Row 9: 0, 1, 59527313920, 113234181108643, 7701145601933312, 137461463840219237, 1215573962763120128, 7008667055272520967, 30322784763588771840, 106757902382656031049, 321859857651846029824
Row 10: 0, 1, 3252626013184, 18073465545032353, 2162675327569362944, 56311245536706922889, 657730167421332884480, 4719958813316934631353, 24445625744089126797312, 100254353682662263787313, 345053755346367061654528
Demonstration of terms:
sin(sin(x)) = x - 2*x^3/3! + 12*x^5/5! - 128*x^7/7! + 1872*x^9/9! - 37600*x^11/11! + ...;
sin(sin(sin(x))) = x - 3*x^3/3! + 33*x^5/5! - 731*x^7/7! + 25857*x^9/9! - 1311379*x^11/11! + ...;
sin(sin(sin(sin(x)))) = x - 4*x^3/3! + 64*x^5/5! - 2160*x^7/7! + 121600*x^9/9! - 10138880*x^11/11! + ....
		

Crossrefs

Cf. A051624 (row n=2), A366827 (row n=3), A003712 (column k=2 signed), A003715 (column k=3 signed).

Programs

  • PARI
    A160562(n,k) = (-1)^k / (2*k+1)! * sum(j=0, k, (-1)^j * binomial(2*k+1, k-j) * (2*j+1)^(2*n+1)) / 2^(2*k)
    coeff_of_n_gfs(n) = my(M=matid(1)); for(k=1, n, M = matconcat([concat(M, matrix(k, 1)); concat(0, matrix(1, k, i, j, A160562(k, j-1))*M)])); M \\ The lower triangle matrix (C(i,j))_{0<=j<=i<=n}
    T_mat(n,k) = coeff_of_n_gfs(n)*matrix(n+1, k+1, i, j, binomial(j-1,i-1)) \\ gives T(i,j) for i=0..n and j=0..k

Formula

T(0,0) = 1, T(n,0) = 0 for n >= 1; T(n,k) = Sum_{i=0..n} A160562(n,i)*T(i,k-1) for k >= 1, where A160562(n,k) = ((-1)^(n-k)*(2*n+1)!/(2*k+1)!) * [x^(2*n+1)]sin(x)^(2*k+1). Note that this is not very efficient to calculate the terms.
A more efficient way would be to calculate the g.f. for each row: the g.f. of the n-th row is C(n,0)/(1-x) + C(n,1)*x/(1-x)^2 + ... + C(n,n)*x^n/(1-x)^(n+1), where C(0,0) = 1, C(n,0) = 0 for n >= 1; C(n,k) = A160562(n,k-1)*C(k-1,k-1) + ... + A160562(n,n-1)*C(n-1,k-1) for n >= k >= 1, so we have T(n,k) = C(n,0)*binomial(k,0) + C(n,1)*binomial(k,1) + ... + C(n,n)*binomial(k,n). See my pdf in the link section for the proof.
From the formula above we see that the n-th row is a degree-n polynomial of k with leading coefficient C(n,n)/n!. We have C(n,n) = A160562(n,n-1)*C(n-1,n-1) = A000447(n)*C(n-1,n-1) for n >= 1, so it can be shown that C(n,n)/n! = n! * A285018(n)/A285019(n).