A366834 Square array read by descending antidiagonals: (-1)^n*T(n,k)/n! is the coefficient of x^(2*n+1) in the Taylor expansion of the k-th iteration of sin(x).
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 12, 1, 0, 1, 4, 33, 128, 1, 0, 1, 5, 64, 731, 1872, 1, 0, 1, 6, 105, 2160, 25857, 37600, 1, 0, 1, 7, 156, 4765, 121600, 1311379, 990784, 1, 0, 1, 8, 217, 8896, 368145, 10138880, 89060065, 32333824, 1, 0, 1, 9, 288, 14903, 873936, 42807605, 1162426880, 7778778091, 1272660224, 1, 0
Offset: 0
Examples
G.f.s of the first few rows: n = 0: 1/(1-x); n = 1: x/(1-x)^2; n = 2: x/(1-x)^2 + 10*x^2/(1-x)^3; n = 3: x/(1-x)^2 + 126*x^2/(1-x)^3 + 350*x^3/(1-x)^4: n = 4: x/(1-x)^2 + 1870*x^2/(1-x)^3 + 20244*x^3/(1-x)^4 + 29400*x^4/(1-x)^5; n = 5: x/(1-x)^2 + 37598*x^2/(1-x)^3 + 1198582*x^3/(1-x)^4 + 5118960*x^4/(1-x)^5 + 4851000*x^5/(1-x)^6. The explicit formulas for the first few rows: T(0,k) = binomial(k,0) = 1 for k = 0, 0 for k > 0; T(1,k) = binomial(k,1) = k; T(2,k) = binomial(k,1) + 10*binomial(k,2) = 5*k^2 - 4*k; T(3,k) = binomial(k,1) + 126*binomial(k,2) + 350*binomial(k,3) = (175/3)*k^3 - 112*k^2 + (164/3)*k; T(4,k) = binomial(k,1) + 1870*binomial(k,2) + 20244*binomial(k,3) + 29400*binomial(k,4) = 1225*k^4 - 3976*k^3 + 4288*k^2 - 1536*k; T(5,k) = binomial(k,1) + 37598*binomial(k,2) + 1198582*binomial(k,3) + 5118960*binomial(k,4) + 4851000*binomial(k,5) = 40425*k^5 - 190960*k^4 + (1004696/3)*k^3 - 255552*k^2 + (213568/3)*k. Table of terms: Row 0: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 Row 1: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 Row 2: 0, 1, 12, 33, 64, 105, 156, 217, 288, 369, 460 Row 3: 0, 1, 128, 731, 2160, 4765, 8896, 14903, 23136, 33945, 47680 Row 4: 0, 1, 1872, 25857, 121600, 368145, 873936, 1776817, 3244032, 5472225, 8687440 Row 5: 0, 1, 37600, 1311379, 10138880, 42807605, 130426016, 323774535, 698156544, 1358249385, 2442955360 Row 6: 0, 1, 990784, 89060065, 1162426880, 6937805945, 27344158016, 83303826249, 212901058560, 478937915985, 977877567040 Row 7: 0, 1, 32333824, 7778778091, 174394695680, 1487589904205, 7634965431296, 28668866786679, 87104014381056, 227079171721785, 527214112015360 Row 8: 0, 1, 1272660224, 849264442881, 33044097597440, 406373544070945, 2731282112246016, 12688038285458529, 45949019179646976, 139088689115885505, 367745105831952640 Row 9: 0, 1, 59527313920, 113234181108643, 7701145601933312, 137461463840219237, 1215573962763120128, 7008667055272520967, 30322784763588771840, 106757902382656031049, 321859857651846029824 Row 10: 0, 1, 3252626013184, 18073465545032353, 2162675327569362944, 56311245536706922889, 657730167421332884480, 4719958813316934631353, 24445625744089126797312, 100254353682662263787313, 345053755346367061654528 Demonstration of terms: sin(sin(x)) = x - 2*x^3/3! + 12*x^5/5! - 128*x^7/7! + 1872*x^9/9! - 37600*x^11/11! + ...; sin(sin(sin(x))) = x - 3*x^3/3! + 33*x^5/5! - 731*x^7/7! + 25857*x^9/9! - 1311379*x^11/11! + ...; sin(sin(sin(sin(x)))) = x - 4*x^3/3! + 64*x^5/5! - 2160*x^7/7! + 121600*x^9/9! - 10138880*x^11/11! + ....
Links
- Jianing Song, Table of n, a(n) for n = 0..5150 (diagonals 0..100)
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
- Jianing Song, Formula for A366834.
Crossrefs
Programs
-
PARI
A160562(n,k) = (-1)^k / (2*k+1)! * sum(j=0, k, (-1)^j * binomial(2*k+1, k-j) * (2*j+1)^(2*n+1)) / 2^(2*k) coeff_of_n_gfs(n) = my(M=matid(1)); for(k=1, n, M = matconcat([concat(M, matrix(k, 1)); concat(0, matrix(1, k, i, j, A160562(k, j-1))*M)])); M \\ The lower triangle matrix (C(i,j))_{0<=j<=i<=n} T_mat(n,k) = coeff_of_n_gfs(n)*matrix(n+1, k+1, i, j, binomial(j-1,i-1)) \\ gives T(i,j) for i=0..n and j=0..k
Formula
T(0,0) = 1, T(n,0) = 0 for n >= 1; T(n,k) = Sum_{i=0..n} A160562(n,i)*T(i,k-1) for k >= 1, where A160562(n,k) = ((-1)^(n-k)*(2*n+1)!/(2*k+1)!) * [x^(2*n+1)]sin(x)^(2*k+1). Note that this is not very efficient to calculate the terms.
A more efficient way would be to calculate the g.f. for each row: the g.f. of the n-th row is C(n,0)/(1-x) + C(n,1)*x/(1-x)^2 + ... + C(n,n)*x^n/(1-x)^(n+1), where C(0,0) = 1, C(n,0) = 0 for n >= 1; C(n,k) = A160562(n,k-1)*C(k-1,k-1) + ... + A160562(n,n-1)*C(n-1,k-1) for n >= k >= 1, so we have T(n,k) = C(n,0)*binomial(k,0) + C(n,1)*binomial(k,1) + ... + C(n,n)*binomial(k,n). See my pdf in the link section for the proof.
Comments