cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366842 Number of integer partitions of n whose odd parts have a common divisor > 1.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 1, 4, 1, 8, 3, 13, 6, 21, 10, 36, 15, 53, 28, 80, 41, 122, 63, 174, 97, 250, 140, 359, 201, 496, 299, 685, 410, 949, 575, 1284, 804, 1726, 1093, 2327, 1482, 3076, 2023, 4060, 2684, 5358, 3572, 6970, 4745, 9050, 6221, 11734, 8115, 15060, 10609
Offset: 0

Views

Author

Gus Wiseman, Oct 28 2023

Keywords

Examples

			The a(3) = 1 through a(11) = 13 partitions:
  (3)  .  (5)    (3,3)  (7)      (3,3,2)  (9)        (5,5)      (11)
          (3,2)         (4,3)             (5,4)      (4,3,3)    (6,5)
                        (5,2)             (6,3)      (3,3,2,2)  (7,4)
                        (3,2,2)           (7,2)                 (8,3)
                                          (3,3,3)               (9,2)
                                          (4,3,2)               (4,4,3)
                                          (5,2,2)               (5,4,2)
                                          (3,2,2,2)             (6,3,2)
                                                                (7,2,2)
                                                                (3,3,3,2)
                                                                (4,3,2,2)
                                                                (5,2,2,2)
                                                                (3,2,2,2,2)
		

Crossrefs

This is the odd case of A018783, complement A000837.
The even version is A047967.
The complement is counted by A366850, ranks A366846.
A000041 counts integer partitions, strict A000009.
A000740 counts relatively prime compositions.
A113685 counts partitions by sum of odds, stat A366528, w/o zeros A365067.
A168532 counts partitions by gcd.
A239261 counts partitions with (sum of odd parts) = (sum of even parts).
A289508 gives gcd of prime indices, positions of ones A289509.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], GCD@@Select[#,OddQ]>1&]], {n,0,30}]
  • Python
    from math import gcd
    from sympy.utilities.iterables import partitions
    def A366842(n): return sum(1 for p in partitions(n) if gcd(*(q for q in p if q&1))>1) # Chai Wah Wu, Oct 28 2023