A366843 Number of integer partitions of n into odd, relatively prime parts.
1, 1, 1, 1, 2, 2, 3, 4, 6, 6, 9, 11, 13, 17, 21, 23, 32, 37, 42, 53, 62, 70, 88, 103, 116, 139, 164, 184, 220, 255, 283, 339, 390, 435, 511, 578, 653, 759, 863, 963, 1107, 1259, 1401, 1609, 1814, 2015, 2303, 2589, 2878, 3259, 3648, 4058, 4580, 5119, 5672, 6364
Offset: 0
Keywords
Examples
The a(1) = 1 through a(8) = 6 partitions: (1) (11) (111) (31) (311) (51) (331) (53) (1111) (11111) (3111) (511) (71) (111111) (31111) (3311) (1111111) (5111) (311111) (11111111)
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],#=={}||And@@OddQ/@#&&GCD@@#==1&]],{n,0,30}]
-
Python
from math import gcd from sympy.utilities.iterables import partitions def A366843(n): return sum(1 for p in partitions(n) if all(d&1 for d in p) and gcd(*p)==1) # Chai Wah Wu, Oct 30 2023