A366858 Array read by ascending antidiagonals: A(n, k) = n! * [x^n] exp((k-1)*x)*(k*cosh(sqrt(k)*x) + sqrt(k)*sinh(sqrt(k)*x))/k, with 1 <= k <= n.
1, 1, 2, 1, 5, 3, 1, 12, 11, 4, 1, 29, 41, 19, 5, 1, 70, 153, 94, 29, 6, 1, 169, 571, 469, 177, 41, 7, 1, 408, 2131, 2344, 1097, 296, 55, 8, 1, 985, 7953, 11719, 6829, 2181, 457, 71, 9, 1, 2378, 29681, 58594, 42565, 16186, 3889, 666, 89, 10, 1, 5741, 110771, 292969, 265401, 120421, 33415, 6413, 929, 109, 11
Offset: 1
Examples
The array begins: 1, 2, 3, 4, 5, 6, ... 1, 5, 11, 19, 29, 41, ... 1, 12, 41, 94, 177, 296, ... 1, 29, 153, 469, 1097, 2181, ... 1, 70, 571, 2344, 6829, 16186, ... 1, 169, 2131, 11719, 42565, 120421, ... ...
Crossrefs
Programs
-
Mathematica
A[n_,k_]:=n! SeriesCoefficient[E^((k-1) x)(k Cosh[Sqrt[k]x]+Sqrt[k]Sinh[Sqrt[k]*x])/k,{x,0,n}]; Table[A[n-k+1,k],{n,11},{k,n}]//Flatten (* or *) A[n_,k_]:=(Sqrt[k]((k+Sqrt[k]-1)^n+(k-Sqrt[k]-1)^n)+(k+Sqrt[k]-1)^n-(k-Sqrt[k]-1)^n)/(2Sqrt[k]); Simplify[Table[A[n-k+1,k],{n,11},{k,n}]]//Flatten