A366877 Lexicographically earliest infinite sequence such that a(i) = a(j) => A337377(i) = A337377(j) for all i, j >= 0, where A337377 is the primorial deflation (denominator) of Doudna sequence.
1, 1, 2, 1, 3, 1, 4, 1, 5, 3, 2, 1, 6, 2, 7, 1, 8, 5, 9, 3, 3, 1, 4, 1, 10, 6, 11, 1, 12, 4, 13, 1, 14, 8, 15, 5, 16, 5, 17, 3, 5, 3, 2, 1, 6, 2, 7, 1, 18, 10, 19, 6, 20, 3, 4, 1, 21, 12, 22, 2, 23, 7, 24, 1, 25, 14, 26, 8, 27, 8, 28, 5, 29, 16, 15, 5, 30, 9, 31, 3, 8, 5, 9, 3, 3, 1, 4, 1, 10, 6, 11, 1, 12, 4, 13, 1, 32, 18
Offset: 0
Keywords
Links
Programs
-
PARI
up_to = 65537; rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); }; A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)}; A319627(n) = (A064989(n) / gcd(n, A064989(n))); A337377(n) = A319627(A005940(1+n)); v366877 = rgs_transform(vector(1+up_to,n,A337377(n-1))); A366877(n) = v366877[1+n];
Comments