cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A366988 The number of prime powers of prime numbers (A053810) that divide n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 2, 1, 0, 2, 1, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 2, 1, 1, 0, 1, 0, 2, 0, 2, 0, 0, 0, 1, 0, 0, 1, 3, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 1, 1, 0, 0, 0, 2, 2, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Amiram Eldar, Oct 31 2023

Keywords

Comments

a(n) depends only on the prime signature of n.
Every nonnegative number appears in the sequence of record values. k >= 1 first occurs at n = 2^prime(k) (A034785).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := PrimePi[e]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); sum(i = 1, #f~, primepi(f[i, 2]));}

Formula

Additive with a(p^e) = A000720(e).
a(n) = 0 if and only if n is squarefree (A005117).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime} P(p) = 0.67167522222173297323..., where P(s) is the prime zeta function.

A366991 The number of divisors of n that are not terms of A322448.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 4, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 5, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 8, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 12, 2, 4, 6, 5, 4, 8, 2, 6, 4, 8, 2, 12, 2, 4, 6, 6, 4, 8, 2, 8, 4, 4, 2, 12, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Oct 31 2023

Keywords

Comments

First differs from A365680 at n = 64.
The number of divisors of n whose prime factorization has exponents that are all either 1 or primes.
The sum of these divisors is A366992(n) and the largest of them is A366994(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := PrimePi[e] + 2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, primepi(f[i, 2]) + 2);}

Formula

Multiplicative with a(p^e) = A000720(e) + 2.
a(n) <= A000005(n), with equality if and only if n is a biquadratefree number (A046100).

A366994 The largest divisor of n that is not a term of A322448.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 8, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 24, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 32, 65, 66, 67, 68
Offset: 1

Views

Author

Amiram Eldar, Oct 31 2023

Keywords

Comments

First differs from A365683 at n = 64.
The largest divisor of n whose prime factorization has exponents that are all either 1 or primes.
The number of these divisors is A366991(n) and their sum is A366992(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^If[e == 1, 1, NextPrime[e+1, -1]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1, f[i, 1], f[i, 1]^precprime(f[i, 2])));}

Formula

Multiplicative with a(p) = p and a(p^e) = p^A007917(e) for e >= 2.
a(n) <= n, with equality if and only if n is not in A322448.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} f(1/p) = 0.48535795387619596052..., where f(x) = (1 - x) * (1 + Sum_{k>=1} x^(2*k-s(k))), s(k) = A007917(k) for k >= 2, and s(1) = 1.
Showing 1-3 of 3 results.