cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A366989 The number of prime powers p^q dividing n, where p is prime and q is either 1 or prime (A334393 without the first term 1).

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 3, 1, 4, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 4, 2, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 4, 1, 2, 3, 4, 2, 3, 1, 3, 2, 3, 1, 5, 1, 2, 3, 3, 2, 3, 1, 4, 3, 2, 1, 4, 2, 2, 2
Offset: 1

Views

Author

Amiram Eldar, Oct 31 2023

Keywords

Comments

First differs from A122810 at n = 48, and from A318322 at n = 64.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := PrimePi[e] + 1; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); sum(i = 1, #f~, 1 + primepi(f[i, 2]));}

Formula

Additive with a(p^e) = A000720(e) + 1.
a(n) = 1 is and only if n is squarefree (A005117) > 1.
a(n) = A366988(n) + A001221(n).
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761), C = Sum_{p prime} P(p) = 0.67167522222173297323..., and P(s) is the prime zeta function.

A366990 The sum of divisors of n that are terms of A056166.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 13, 10, 1, 1, 5, 1, 1, 1, 13, 1, 10, 1, 5, 1, 1, 1, 13, 26, 1, 37, 5, 1, 1, 1, 45, 1, 1, 1, 50, 1, 1, 1, 13, 1, 1, 1, 5, 10, 1, 1, 13, 50, 26, 1, 5, 1, 37, 1, 13, 1, 1, 1, 5, 1, 1, 10, 45, 1, 1, 1, 5, 1, 1, 1, 130, 1, 1, 26, 5, 1, 1, 1, 13
Offset: 1

Views

Author

Amiram Eldar, Oct 31 2023

Keywords

Comments

The number of these divisors is A095691(n) and the largest of them is A366993(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 1 + Total[p^Select[Range[e], PrimeQ]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + sum(j = 1, f[i, 2], if(isprime(j), f[i, 1]^j)));}

Formula

Multiplicative with a(p^e) = 1 + Sum_{primes q <= e} p^q.
a(n) >= 1, with equality if and only if n is squarefree (A005117).

A366993 The largest divisor of n that is a term of A056166.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 8, 9, 1, 1, 4, 1, 1, 1, 8, 1, 9, 1, 4, 1, 1, 1, 8, 25, 1, 27, 4, 1, 1, 1, 32, 1, 1, 1, 36, 1, 1, 1, 8, 1, 1, 1, 4, 9, 1, 1, 8, 49, 25, 1, 4, 1, 27, 1, 8, 1, 1, 1, 4, 1, 1, 9, 32, 1, 1, 1, 4, 1, 1, 1, 72, 1, 1, 25, 4, 1, 1, 1, 8, 27, 1, 1, 4
Offset: 1

Views

Author

Amiram Eldar, Oct 31 2023

Keywords

Comments

The number of these divisors is A095691(n) and their sum is A366990(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^If[e == 1, 0, NextPrime[e+1, -1]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^precprime(f[i, 2]));}

Formula

Multiplicative with a(p) = 1 and a(p^e) = p^A007917(e).
a(n) <= n, with equality if and only if n is in A056166.
a(n) >= 1, with equality if and only if n is squarefree (A005117).

A383104 Inverse Möbius transform of A382883.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 2, 1, 0, 2, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 2, 1, 1, 0, 1, 0, 2, 0, 2, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 2, 2, 0, 0, 1, 0, 0
Offset: 1

Views

Author

Peter Luschny, Apr 16 2025

Keywords

Crossrefs

Programs

  • Maple
    # Seen as a special case of a transformation:
    A382883Transform := (b, len) -> local n, d; seq(add(A382883(n/d)*b(d), d in numtheory:-divisors(n)), n = 1..len): A382883Transform(n -> 1, 99);
  • Mathematica
    V[n_, e_] := If[e == 1, 1, IntegerExponent[n, e]]; f[n_] := f[n] = -DivisorSum[n, V[n, #] * f[#] &, # < n &]; f[1] = 1; a[n_] := DivisorSum[n, f[#] &]; Array[a, 100] (* Amiram Eldar, Apr 29 2025 *)
  • SageMath
    def a(n): return sum(A382883(n/d) for d in divisors(n))
    print([a(n) for n in range(1, 90)])
    # More general:
    def A382883Transform(n: int, b: Callable[[int], int]) -> int:
        return sum(A382883(n/d)*b(d) for d in divisors(n))
    def a(n) -> int: return A382883Transform(n, lambda x: 1)

Formula

a(n) = Sum_{d|n} A382883(d).

A384812 If n = Product prime(i)^e(i) then a(n) = Sum prime(e(i)).

Original entry on oeis.org

0, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 5, 2, 4, 4, 7, 2, 5, 2, 5, 4, 4, 2, 7, 3, 4, 5, 5, 2, 6, 2, 11, 4, 4, 4, 6, 2, 4, 4, 7, 2, 6, 2, 5, 5, 4, 2, 9, 3, 5, 4, 5, 2, 7, 4, 7, 4, 4, 2, 7, 2, 4, 5, 13, 4, 6, 2, 5, 4, 6, 2, 8, 2, 4, 5, 5, 4, 6, 2, 9, 7, 4, 2, 7, 4, 4, 4, 7, 2, 7
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 10 2025

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local t;
      add(ithprime(t[2]),t=ifactors(n)[2])
    end proc:
    map(f, [$1..100]); # Robert Israel, Jul 25 2025
  • Mathematica
    Table[Plus @@ (Prime[#[[2]]] & /@ FactorInteger[n]), {n, 1, 90}]
  • PARI
    a(n) = my(f=factor(n)); sum(k=1, #f~, prime(f[k,2])); \\ Michel Marcus, Jun 10 2025
Showing 1-5 of 5 results.