A366995 a(n) is the numerator of the expected end time of a game with three gamblers, one of which starts with capital n, the others with capital 1 each, conditional on the event that one of the two poor players wins.
3, 39, 359, 2477, 119667, 1522705, 46419629, 6143100517, 5472109127035, 790136773603303, 278129286200597661, 16684426086791338103, 503067648850136040148699, 2626565018569118643191009, 10920130209346850287269887104735, 236686188450953790757840351941895
Offset: 1
Links
- Pontus von Brömssen, Table of n, a(n) for n = 1..53
- Persi Diaconis and Stewart N. Ethier, Gambler’s ruin and the ICM, Statist. Sci. 37 (3) 289-305, August 2022.
- Persi Diaconis, Gambler's ruin with k gamblers, slides from talk in the Rutgers Experimental Mathematics Seminar, Fall 2023 Semester, Oct 12, 2023.
- Experimental Mathematics, Gambler’s ruin with k gamblers, recording of talk, Vimeo video, Oct 22, 2023.
Programs
-
Sage
from itertools import permutations def T(n): nodes = [(i,j) for i in range(n+2) for j in range((n+2-i)//2+1)] m = len(nodes) Q0 = {x:{y:0 for y in nodes} for x in nodes} for x in nodes: c1 = x+(n+2-sum(x),) for i,j in permutations(range(3),int(2)): if c1[i] and c1[j]: c2 = list(c1) c2[i] -= 1 c2[j] += 1 y = (c2[0],min(c2[1:])) if c2[0] != n+2: Q0[x][y] += n+2-c2[0] Q0 = matrix(QQ,[list(R.values()) for R in Q0.values()]) s = sum(Q0.columns()) Q = identity_matrix(QQ,m-1) for i in range(1,m): for j in range(1,m): if s[i] != 0: Q[i-1,j-1] -= Q0[i,j]/s[i] return (Q**(-1)*ones_matrix(QQ,m-1))[-2,0] def A366995(n): return T(n).numerator() def A366996(n): return T(n).denominator()
Comments