cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A359807 a(1) = 0; thereafter a(n) is the largest a(i) + i which is < n among i = 1..n-1.

Original entry on oeis.org

0, 1, 1, 3, 4, 4, 4, 7, 7, 9, 10, 11, 11, 11, 11, 15, 16, 16, 16, 19, 19, 21, 21, 23, 24, 25, 26, 26, 26, 26, 26, 31, 31, 33, 34, 35, 35, 35, 35, 39, 40, 40, 40, 43, 44, 44, 44, 47, 47, 49, 49, 51, 51, 53, 54, 55, 56, 57, 57, 57, 57, 57, 57, 63, 64, 64, 64, 67, 67, 69, 69, 71, 72, 73, 74, 74, 74, 74, 74
Offset: 1

Views

Author

Neal Gersh Tolunsky, Jan 13 2023

Keywords

Comments

Critical values of Conway's game of one-dimensional phutball (A037988), except for the initial zero.
Conjectured run lengths are A272729, and the terms which occur here are partial sums of A272729.
The next distinct term here occurs at index a(i)+i+1 for every index i.

Examples

			For n=3, we see that for i=1 and 2, a(i)+i = 1 and 3, of which only 1 is < n=3, so that a(3)=1.
For n=5, i=1..4 have a(i)+i = 1,3,4,7 and the largest < n=5 is 4 so that a(5)=4.
		

Crossrefs

Programs

  • PARI
    lista(nn) = my(va = vector(nn)); va[1] = 0; for (n=2, nn, va[n] = vecmax(select(x->(xMichel Marcus, Jan 31 2023
    
  • PARI
    { my (v = 0, m = 0); for (n = 1, 79, if (bittest(m, n-1), v = n-1); print1 (v", "); m = bitor(m, 2^(v+n))) } \\ Rémy Sigrist, Feb 08 2023

A367039 a(1) = 0, a(2) = 1; thereafter a(n) is the largest index < n not equal to i +- a(i) for any i = 1..n-1.

Original entry on oeis.org

0, 1, 2, 2, 4, 4, 4, 7, 8, 8, 8, 8, 12, 13, 14, 14, 16, 16, 16, 16, 16, 21, 22, 23, 24, 24, 26, 26, 28, 28, 28, 31, 32, 32, 32, 32, 32, 32, 38, 39, 40, 41, 42, 42, 44, 44, 46, 46, 48, 48, 48, 51, 52, 52, 52, 55, 56, 56, 56, 56, 60, 61, 62, 62, 64, 64, 64, 64, 64, 64, 64
Offset: 1

Views

Author

Neal Gersh Tolunsky, Nov 02 2023

Keywords

Comments

It appears that A085262 gives the distinct values of this sequence (except for the initial zero).
The sequence is nondecreasing.

Examples

			a(8)=7 because 7 is the largest index that cannot be expressed as the sum a(i)+-i for any i < n. 4 also cannot be expressed in this way, but it is smaller than 7.
Another way to see this is to consider each index i as a location from which one can jump a(i) terms forward or backward. For a(8)=7, we find the largest index which cannot be reached in this way (a smaller index being i=4):
0, 1, 2, 2, 4, 4, 4
0<-1
0, 1, 2, 2, 4, 4, 4
   1<----2
0, 1, 2, 2, 4, 4, 4
   1->2<----------4
0, 1, 2, 2, 4, 4, 4
         ?
0, 1, 2, 2, 4, 4, 4
      2---->4
0, 1, 2, 2, 4, 4, 4
         2---->4
0, 1, 2, 2, 4, 4, 4
                  ?
		

Crossrefs

Showing 1-2 of 2 results.