cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367056 G.f. satisfies A(x) = 1 + x*A(x)^2 + x^3*A(x).

Original entry on oeis.org

1, 1, 2, 6, 17, 52, 168, 561, 1922, 6719, 23871, 85938, 312823, 1149421, 4257460, 15880036, 59594517, 224856450, 852491806, 3245959002, 12407332166, 47592364107, 183139542306, 706794663136, 2735053815771, 10609811267757, 41251228784198
Offset: 0

Views

Author

Seiichi Manyama, Nov 04 2023

Keywords

Crossrefs

Programs

  • Maple
    A367056 := proc(n)
        add(binomial(n-2*k+1,k) * binomial(2*n-5*k,n-3*k)/(n-2*k+1),k=0..floor(n/3)) ;
    end proc:
    seq(A367056(n),n=0..70) ; # R. J. Mathar, Dec 04 2023
  • PARI
    a(n) = sum(k=0, n\3, binomial(n-2*k+1, k)*binomial(2*n-5*k, n-3*k)/(n-2*k+1));

Formula

G.f.: A(x) = 2 / (1-x^3+sqrt((1-x^3)^2-4*x)).
a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k+1,k) * binomial(2*n-5*k,n-3*k)/(n-2*k+1).
D-finite with recurrence (n+1)*a(n) +2*(-2*n+1)*a(n-1) +(-2*n+7)*a(n-3) +(n-8)*a(n-6)=0. - R. J. Mathar, Dec 04 2023