A367093 Least positive integer with n more semiprime divisors than semi-sums of prime indices.
1, 90, 630, 2310, 6930, 34650, 30030, 90090, 450450, 570570, 510510, 1531530, 7657650, 14804790, 11741730, 9699690, 29099070, 145495350
Offset: 0
Examples
The terms together with their prime indices begin: 1: {} 90: {1,2,2,3} 630: {1,2,2,3,4} 2310: {1,2,3,4,5} 6930: {1,2,2,3,4,5} 34650: {1,2,2,3,3,4,5} 30030: {1,2,3,4,5,6} 90090: {1,2,2,3,4,5,6} 450450: {1,2,2,3,3,4,5,6} 570570: {1,2,3,4,5,6,8} 510510: {1,2,3,4,5,6,7}
Crossrefs
Programs
-
Mathematica
nn=10000; w=Table[Length[Union[Subsets[prix[n],{2}]]]-Length[Union[Total/@Subsets[prix[n],{2}]]],{n,nn}]; spnm[y_]:=Max@@NestWhile[Most,y,Union[#]!=Range[0,Max@@#]&]; Table[Position[w,k][[1,1]],{k,0,spnm[w]}]
-
Python
from itertools import count from sympy import factorint, primepi from sympy.utilities.iterables import multiset_combinations def A367093(n): for k in count(1): c, a = 0, set() for s in (sum(p) for p in multiset_combinations({primepi(i):j for i,j in factorint(k).items()},2)): if s not in a: a.add(s) else: c += 1 if c > n: break if c == n: return k # Chai Wah Wu, Nov 13 2023
Extensions
a(12)-a(16) from Chai Wah Wu, Nov 13 2023
a(17) from Chai Wah Wu, Nov 18 2023
Comments