A367094 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of integer partitions of 2n whose number of submultisets summing to n is k.
0, 1, 1, 1, 2, 2, 1, 5, 3, 3, 8, 4, 9, 1, 17, 6, 16, 1, 2, 24, 7, 33, 4, 9, 46, 11, 52, 3, 18, 1, 4, 64, 12, 91, 6, 38, 3, 15, 1, 1, 107, 17, 138, 9, 68, 2, 28, 2, 12, 0, 2, 147, 19, 219, 12, 117, 6, 56, 3, 34, 2, 9, 0, 3
Offset: 0
Examples
The partition (3,2,2,1) has two submultisets summing to 4, namely {2,2} and {1,3}, so it is counted under T(4,2). The partition (2,2,1,1,1,1) has three submultisets summing to 4, namely {1,1,1,1}, {1,1,2}, and {2,2}, so it is counted under T(4,3). Triangle begins: 0 1 1 1 2 2 1 5 3 3 8 4 9 1 17 6 16 1 2 24 7 33 4 9 46 11 52 3 18 1 4 64 12 91 6 38 3 15 1 1 107 17 138 9 68 2 28 2 12 0 2 147 19 219 12 117 6 56 3 34 2 9 0 3 Row n = 4 counts the following partitions: (8) (44) (431) (221111) (71) (3311) (422) (62) (2222) (4211) (611) (11111111) (41111) (53) (3221) (521) (32111) (5111) (311111) (332) (22211) (2111111)
Crossrefs
Programs
-
Mathematica
t=Table[Length[Select[IntegerPartitions[2n], Count[Total/@Union[Subsets[#]],n]==k&]], {n,0,5}, {k,0,1+PartitionsP[n]}]; Table[NestWhile[Most,t[[i]],Last[#]==0&], {i,Length[t]}]
Formula
T(n,1) = A108917(n).