A367098 Number of divisors of n with exactly two distinct prime factors.
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 0, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 0, 2, 0, 3, 0, 0, 1, 1, 1, 4, 0, 1, 1, 3, 0, 3, 0, 2, 2, 1, 0, 4, 0, 2, 1, 2, 0, 3, 1, 3, 1, 1, 0, 5, 0, 1, 2, 0, 1, 3, 0, 2, 1, 3, 0, 6, 0, 1, 2, 2, 1, 3, 0, 4, 0, 1, 0, 5, 1, 1, 1
Offset: 1
Examples
The a(n) divisors for n = 1, 6, 12, 24, 36, 60, 72, 120, 144, 216, 288, 360: . 6 6 6 6 6 6 6 6 6 6 6 12 12 12 10 12 10 12 12 12 10 24 18 12 18 12 18 18 18 12 36 15 24 15 24 24 24 15 20 36 20 36 36 36 18 72 24 48 54 48 20 40 72 72 72 24 144 108 96 36 216 144 40 288 45 72
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
For just one distinct prime factor we have A001222 (prime-power divisors).
This sequence counts divisors belonging to A007774.
Column k = 2 of A146289.
- Positions of ones are A006881 (squarefree semiprimes).
- Positions of twos are A054753.
- Positions of first appearances are A367099.
A001221 counts distinct prime factors.
Programs
-
Mathematica
Table[Length[Select[Divisors[n], PrimeNu[#]==2&]],{n,100}] a[1] = 0; a[n_] := (Total[(e = FactorInteger[n][[;; , 2]])]^2 - Total[e^2])/2; Array[a, 100] (* Amiram Eldar, Jan 08 2024 *)
-
PARI
a(n) = {my(e = factor(n)[, 2]); (vecsum(e)^2 - e~*e)/2;} \\ Amiram Eldar, Jan 08 2024