A367105 Least positive integer with n more divisors than distinct subset-sums of prime indices.
1, 12, 24, 48, 60, 192, 144, 120, 180, 336, 240, 630, 420, 360, 900, 1344, 960, 1008, 720, 840, 2340, 1980, 1260, 1440, 3120, 2640, 1680, 4032, 2880, 6840, 3600, 4620, 3780, 2520, 6480, 11700, 8820, 6300, 7200, 10560, 6720, 12240, 9360, 7920, 5040, 10920, 9240
Offset: 1
Keywords
Examples
The divisors of 60 are {1,2,3,4,5,6,10,12,15,20,30,60}, and the distinct subset-sums of its prime indices {1,1,2,3} are {0,1,2,3,4,5,6,7}, so the difference is 12 - 8 = 4. Since 60 is the first number with this difference, we have a(4) = 60. The terms together with their prime indices begin: 1: {} 12: {1,1,2} 24: {1,1,1,2} 48: {1,1,1,1,2} 60: {1,1,2,3} 120: {1,1,1,2,3} 144: {1,1,1,1,2,2} 180: {1,1,2,2,3} 192: {1,1,1,1,1,1,2} 240: {1,1,1,1,2,3} 336: {1,1,1,1,2,4} 360: {1,1,1,2,2,3} 420: {1,1,2,3,4} 630: {1,2,2,3,4} 720: {1,1,1,1,2,2,3} 840: {1,1,1,2,3,4} 900: {1,1,2,2,3,3} 960: {1,1,1,1,1,1,2,3}
Crossrefs
Programs
-
Mathematica
nn=1000; w=Table[DivisorSigma[0,n]-Length[Union[Total/@Subsets[prix[n]]]],{n,nn}]; spnm[y_]:=Max@@Select[Union[y],Function[i,Union[Select[y,#<=i&]]==Range[0,i]]]; Table[Position[w,k][[1,1]],{k,0,spnm[w]}]
Comments