A367106 Triangle read by rows where T(n,k) is the number of complete length-k integer partitions of n.
1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 2, 1, 1, 0, 0, 0, 1, 2, 1, 1, 0, 0, 0, 1, 3, 2, 1, 1, 0, 0, 0, 0, 3, 3, 2, 1, 1, 0, 0, 0, 0, 4, 5, 3, 2, 1, 1, 0, 0, 0, 0, 3, 5, 5, 3, 2, 1, 1, 0, 0, 0, 0, 4, 8, 7, 5, 3, 2, 1, 1, 0, 0, 0, 0, 2, 9, 9, 7, 5
Offset: 0
Examples
Triangle begins: 1 0 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 2 1 1 0 0 0 1 2 1 1 0 0 0 1 3 2 1 1 0 0 0 0 3 3 2 1 1 0 0 0 0 4 5 3 2 1 1 0 0 0 0 3 5 5 3 2 1 1 0 0 0 0 4 8 7 5 3 2 1 1 0 0 0 0 2 9 9 7 5 3 2 1 1 0 0 0 0 2 11 12 11 7 5 3 2 1 1 0 0 0 0 1 11 16 13 11 7 5 3 2 1 1 0 0 0 0 1 14 21 19 15 11 7 5 3 2 1 1 Row n = 11 counts the following partitions (empty columns not shown): 6311 62111 611111 5111111 41111111 311111111 2111111111 11111111111 6221 53111 521111 4211111 32111111 221111111 5321 52211 431111 3311111 22211111 4421 44111 422111 3221111 43211 332111 2222111 42221 322211 33311 222221 33221
Crossrefs
Programs
-
Mathematica
nmz[y_]:=Complement[Range[Total[y]],Total/@Subsets[y]]; Table[Length[Select[IntegerPartitions[n,{k}],nmz[#]=={}&]],{n,0,15},{k,0,n}]
Comments