A367108 Triangle read by rows where T(n,k) is the number of integer partitions of n with a unique submultiset summing to k.
1, 1, 1, 2, 1, 2, 3, 2, 2, 3, 5, 3, 2, 3, 5, 7, 5, 4, 4, 5, 7, 11, 7, 6, 3, 6, 7, 11, 15, 11, 8, 7, 7, 8, 11, 15, 22, 15, 12, 10, 4, 10, 12, 15, 22, 30, 22, 16, 14, 12, 12, 14, 16, 22, 30, 42, 30, 22, 17, 17, 6, 17, 17, 22, 30, 42, 56, 42, 30, 25, 23, 20, 20, 23, 25, 30, 42, 56
Offset: 1
Examples
Triangle begins: 1 1 1 2 1 2 3 2 2 3 5 3 2 3 5 7 5 4 4 5 7 11 7 6 3 6 7 11 15 11 8 7 7 8 11 15 22 15 12 10 4 10 12 15 22 30 22 16 14 12 12 14 16 22 30 42 30 22 17 17 6 17 17 22 30 42 56 42 30 25 23 20 20 23 25 30 42 56 77 56 40 31 30 27 7 27 30 31 40 56 77 Row n = 5 counts the following partitions: (5) (41) (32) (32) (41) (5) (41) (311) (311) (311) (311) (41) (32) (221) (221) (221) (221) (32) (311) (2111) (11111) (11111) (2111) (311) (221) (11111) (11111) (221) (2111) (2111) (11111) (11111) Row n = 6 counts the following partitions: (6) (51) (42) (33) (42) (51) (6) (51) (411) (411) (2211) (411) (411) (51) (42) (321) (321) (111111) (321) (321) (42) (411) (3111) (3111) (3111) (3111) (411) (33) (2211) (222) (222) (2211) (33) (321) (21111) (111111) (111111) (21111) (321) (3111) (111111) (111111) (3111) (222) (222) (2211) (2211) (21111) (21111) (111111) (111111)
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n], Count[Total/@Union[Subsets[#]], k]==1&]], {n,0,10}, {k,0,n}]