A367148 Cycle lengths obtained by repeated application of the strip bijection for the triangular lattice described in A367147.
1, 10, 12, 36, 37, 56, 60, 72, 84, 110, 120, 154, 156, 168, 192, 278, 370, 398, 444, 492, 516, 564, 600, 614, 660, 924, 961, 1114, 1128, 1164, 1500, 1574, 1668, 1786, 2052, 2076, 2100, 2220, 2336, 2388, 2604, 2952, 3300, 3456, 3612, 3684, 3924, 4548, 4692, 4882, 4968
Offset: 1
Keywords
Examples
a(1) = 1: Starting point [0, 0] trivially mapped to [0, 0]; Q([0, 0]) -> [0, 0], Q([1, 0]) -> [1, 0]. Points exactly mapped to rotated location. a(2) = 10: [2,0] -> [3,-2] -> [2,-3] -> [1,-3] -> [-1,-2] -> [-2,0] -> [-3,2] -> [-2,3] -> [-1,3] -> [1,2] -> [2, 0]; a(3) = 12: [3,0] -> [4,-2] -> [4,-4] -> [2,-5] -> [-1,-4] -> [-3,-2] -> [-4,0] -> [-5,2] -> [-5, 4] -> [-3,5] -> [0,4] -> [2,2] -> [3,0]. . List of triangular coordinates [i, j] of start points and corresponding cycle lengths: . j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 i \------------------------------------------------------------------- 0 | 1 1 10 10 12 12 56 12 110 12 12 12 12 278 12 12 12 1 | 1 10 10 12 12 12 56 12 12 110 12 12 37 278 12 12 278 2 | 10 10 12 12 56 56 12 110 12 110 37 278 278 12 278 12 278 3 | 12 12 12 12 12 56 12 110 12 110 37 12 278 278 278 12 60 4 | 12 12 12 56 12 110 12 110 12 37 278 12 278 12 60 12 12 5 | 12 56 56 56 12 110 12 12 110 37 278 12 278 12 12 60 12 6 | 12 56 12 110 12 12 12 37 278 278 278 278 12 60 12 60 12 7 | 12 110 12 12 110 12 12 12 278 12 12 278 12 60 12 12 60 8 | 12 12 110 12 110 37 278 37 12 12 12 278 12 12 60 12 398 9 |110 12 110 12 110 37 278 278 12 12 12 12 278 12 398 12 398 10 | 12 12 110 37 12 278 12 278 12 12 278 12 398 398 398 12 12 11 | 12 37 37 278 12 278 278 12 278 12 278 12 398 12 12 12 12 12 | 12 278 278 278 12 12 278 12 278 12 398 12 12 12 12 12 72 13 | 37 278 12 278 278 12 60 12 60 12 398 398 12 12 72 36 72 14 | 12 12 278 12 60 12 60 12 12 398 12 12 12 36 36 12 12 15 | 12 12 278 12 60 12 12 60 12 398 12 12 72 72 12 12 12 16 | 12 12 278 12 12 60 12 60 12 398 12 12 398 72 12 12 72
Links
- Klaus Nagel, Illustration of cycle lengths; points that belong to cycles of the same length are shown with the same color. Randomly selected region in grid.
- Hugo Pfoertner, Visualization of orbits with L <= 1500.
- Hugo Pfoertner, Orbit of length 617818092.
Programs
-
PARI
\\ uses mapping function Q defined in PARI program of A367147 cycle(v) = {my (n=1, w=Q(v)); while (w!=v, n++; w=Q(w)); n}; L = List(); \\ global list to support repeated calls of function a367148 a367148(x10min=2, x10max=3, nrep=10000) = {for (n10=x10min, x10max, my (rmax=10^n10); for (n=1, nrep, my (x=random(rmax), y=random(rmax), c=cycle([x, y])); if(setsearch(L, c)==0, print1([c,x,y],", "); listput(L, c); listsort(L, 1)))); L}; \\ De-activate print to avoid output of starting points a367148(2,3) \\ usually sufficient to get all terms <= 1500, repeat and increase nrep for confirmation; no shortcut for efficient systematic selection of starting points is known.
Comments