cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A367159 E.g.f. satisfies A(x) = 1 - A(x)^2 * log(1 - x*A(x)).

Original entry on oeis.org

1, 1, 7, 95, 1954, 54244, 1901560, 80648658, 4016874920, 229881369768, 14866341101064, 1072223706468672, 85337672738960736, 7429736462231570304, 702426961910810154624, 71667022709644235679120, 7848761844632669045606016, 918383128248130459272478080
Offset: 0

Views

Author

Seiichi Manyama, Nov 07 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (n+2*k)!/(n+k+1)!*abs(stirling(n, k, 1)));

Formula

a(n) = Sum_{k=0..n} (n+2*k)!/(n+k+1)! * |Stirling1(n,k)|.

A367200 E.g.f. satisfies A(x) = 1/(1 - x*A(x))^(A(x)^3).

Original entry on oeis.org

1, 1, 10, 201, 6216, 261300, 13923762, 899679144, 68368215528, 5975493315264, 590584798045440, 65132133511182408, 7929604511136220536, 1056369806709005923992, 152854816585283562807288, 23873492748049623945947160, 4002988479012229417182249408
Offset: 0

Views

Author

Seiichi Manyama, Nov 10 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (n+3*k+1)^(k-1)*abs(stirling(n, k, 1)));

Formula

a(n) = Sum_{k=0..n} (n+3*k+1)^(k-1) * |Stirling1(n,k)|.
Showing 1-2 of 2 results.