A367167 Let Product_{i = 1..omega(n)} p_i^e_i be the prime factorization of n. Then a(n) = Sum_{i = 1..omega(n)} Product_{j = 1..n} p_i^(e_((i+j-1) mod omega(n) + 1)).
0, 2, 3, 4, 5, 12, 7, 8, 9, 20, 11, 30, 13, 28, 30, 16, 17, 30, 19, 70, 42, 44, 23, 78, 25, 52, 27, 126, 29, 90, 31, 32, 66, 68, 70, 72, 37, 76, 78, 290, 41, 126, 43, 286, 120, 92, 47, 210, 49, 70, 102, 390, 53, 78, 110, 742, 114, 116, 59, 300, 61, 124, 210, 64, 130
Offset: 1
Keywords
Examples
a(1) = 0, the empty sum. a(6) = a(2^1*3^1) = 6 + 2^1*3^1 = 6 + 6 = 12. a(12) = a(2^2*3^1) = 12 + 2^1*3^2 = 12 + 18 = 30. a(2250) = a(2^1*3^2*5^3) = 2^3*3^1*5^2 + 2^2*3^3*5^1 + 2^1*3^2*5^3 = 3390.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Log log scatterplot of a(n), n = 1..2^20.
Programs
-
Mathematica
{0}~Join~Array[Total@ Table[Times @@ Power @@@ Transpose@ {#1, RotateRight[#2, k]}, {k, PrimeNu[#]}] & @@ Transpose@ FactorInteger[#] &, 64, 2] (* Michael De Vlieger, Nov 09 2023 *)
-
PARI
a(n) = { my(f = factor(n), res = 0); for(i = 1, #f~, res+=prod(j = 1, #f~, f[j, 1]^f[(i+j-1)%#f~ + 1, 2]) ); res } \\ David A. Corneth, Nov 07 2023
Formula
a(n) = n for n > 1 in A000961.
Let b(0) = n and let b(n+1) = A105119(b(n)) for n >= 0 and let omega(n) be the number of distinct prime factors of n. Then a(n) = Sum_{i = 1..omega(n)} b(i). - David A. Corneth, Nov 07 2023
Extensions
More terms and revised name from David A. Corneth, Nov 07 2023
Comments