A367175 a(n) = Sum_{d|n} (-1)^[d is prime] * d, where [] denotes the Iverson bracket.
1, -1, -2, 3, -4, 2, -6, 11, 7, 4, -10, 18, -12, 6, 8, 27, -16, 29, -18, 28, 12, 10, -22, 50, 21, 12, 34, 38, -28, 52, -30, 59, 20, 16, 24, 81, -36, 18, 24, 76, -40, 72, -42, 58, 62, 22, -46, 114, 43, 79, 32, 68, -52, 110, 40, 102, 36, 28, -58, 148, -60, 30
Offset: 1
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Maple
Isprime := n -> if isprime(n) then 1 else 0 fi: a := n -> local d; add((-1)^Isprime(d) * d, d in NumberTheory:-Divisors(n)): seq(a(n), n = 1..62);
-
Mathematica
Array[DivisorSum[#, (-1)^Boole[PrimeQ[#]]*# &] &, 62] (* Michael De Vlieger, Nov 10 2023 *)
-
PARI
a(n) = sumdiv(n, d, (-1)^isprime(d)*d); \\ Michel Marcus, Nov 10 2023
-
Python
from sympy import divisor_sigma, primefactors def A367175(n): return divisor_sigma(n)-(sum(primefactors(n))<<1) # Chai Wah Wu, Nov 10 2023
-
SageMath
def A367175(n): return sum((-1)^is_prime(d)*d for d in divisors(n)) print([A367175(n) for n in range(1, 63)])