A367177 Triangle read by rows, T(n, k) = [x^k] hypergeom([1/2, -n, -n], [1, 1], 4*x).
1, 1, 2, 1, 8, 6, 1, 18, 54, 20, 1, 32, 216, 320, 70, 1, 50, 600, 2000, 1750, 252, 1, 72, 1350, 8000, 15750, 9072, 924, 1, 98, 2646, 24500, 85750, 111132, 45276, 3432, 1, 128, 4704, 62720, 343000, 790272, 724416, 219648, 12870
Offset: 0
Examples
Triangle T(n, k) starts: [0] 1; [1] 1, 2; [2] 1, 8, 6; [3] 1, 18, 54, 20; [4] 1, 32, 216, 320, 70; [5] 1, 50, 600, 2000, 1750, 252; [6] 1, 72, 1350, 8000, 15750, 9072, 924; [7] 1, 98, 2646, 24500, 85750, 111132, 45276, 3432; [8] 1, 128, 4704, 62720, 343000, 790272, 724416, 219648, 12870; [9] 1, 162, 7776, 141120, 1111320, 4000752, 6519744, 4447872, 1042470, 48620;
Crossrefs
Programs
-
Maple
p := n -> hypergeom([1/2, -n, -n], [1, 1], 4*x): T := (n, k) -> coeff(simplify(p(n)), x, k): seq(seq(T(n, k), k = 0..n), n = 0..9);
Formula
T(n, k) = binomial(n, k)^2 * binomial(2*k, k).