cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A367180 E.g.f. satisfies A(x) = 1 + (exp(x*A(x)^2) - 1)/A(x).

Original entry on oeis.org

1, 1, 3, 19, 187, 2491, 41951, 855387, 20491395, 564179371, 17555839639, 609337562923, 23340215770235, 978038556122811, 44506423393073487, 2185725954288076987, 115224508775345033779, 6490005347933921581195, 388973650645651854960455
Offset: 0

Views

Author

Seiichi Manyama, Nov 08 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (2*n-k)!/(2*n-2*k+1)!*stirling(n, k, 2));

Formula

a(n) = Sum_{k=0..n} (2*n-k)!/(2*n-2*k+1)! * Stirling2(n,k).

A377324 E.g.f. satisfies A(x) = 1 + (exp(x*A(x)^3) - 1)/A(x).

Original entry on oeis.org

1, 1, 5, 52, 839, 18436, 513797, 17366224, 690366875, 31565619916, 1632064968929, 94159057903384, 5996889060457055, 417920884113926740, 31634205840603000221, 2584579552124805784672, 226699825143636127509347, 21247444370267806167804316, 2119206766514801966851437113
Offset: 0

Views

Author

Seiichi Manyama, Oct 24 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (3*n-k)!/(3*n-2*k+1)!*stirling(n, k, 2));

Formula

a(n) = Sum_{k=0..n} (3*n-k)!/(3*n-2*k+1)! * Stirling2(n,k).

A377328 E.g.f. satisfies A(x) = 1 + A(x)^2 * (exp(x*A(x)^3) - 1).

Original entry on oeis.org

1, 1, 11, 250, 8789, 420646, 25536083, 1880370598, 162872596937, 16227667154806, 1828467483194975, 229904271890603014, 31913005486577248877, 4847412341607090455110, 799762918909215143560907, 142427688272456020835132518, 27231132645610171996487568017, 5563389652463220933157357670806
Offset: 0

Views

Author

Seiichi Manyama, Oct 25 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (3*n+2*k)!/(3*n+k+1)!*stirling(n, k, 2));

Formula

a(n) = Sum_{k=0..n} (3*n+2*k)!/(3*n+k+1)! * Stirling2(n,k).

A377348 E.g.f. satisfies A(x) = 1 + (exp(x*A(x)^3) - 1)/A(x)^3.

Original entry on oeis.org

1, 1, 1, 10, 79, 946, 14653, 267478, 5817187, 145061146, 4089128425, 128703410254, 4470302200087, 169912192575490, 7014628977829237, 312570024564324358, 14952747796689292747, 764341021646724256426, 41578052013117358139809, 2398149800670737138081470
Offset: 0

Views

Author

Seiichi Manyama, Oct 26 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, (3*n+1)\4, (3*n-3*k)!/(3*n-4*k+1)!*stirling(n, k, 2));

Formula

a(n) = Sum_{k=0..floor((3*n+1)/4)} (3*n-3*k)!/(3*n-4*k+1)! * Stirling2(n,k).
Showing 1-4 of 4 results.