cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367190 Table read by antidiagonals: Place k points in general position on each side of a regular n-gon and join every pair of the n*(k+1) boundary points by a chord; T(n,k) (n >= 3, k >= 0) gives number of edges in the resulting planar graph.

Original entry on oeis.org

3, 24, 8, 153, 124, 20, 588, 780, 390, 42, 1635, 2816, 2370, 939, 91, 3708, 7480, 8300, 5568, 1932, 136, 7329, 16428, 21600, 19149, 11193, 3512, 288, 13128, 31724, 46770, 49242, 37996, 20176, 5994, 390, 21843, 55840, 89390, 105747, 96915, 67936, 33750, 9455, 715
Offset: 3

Views

Author

Keywords

Comments

"In general position" implies that the internal lines (or chords) formed from the n*k edge points only have simple intersections; there is no interior points where three or more such chords meet. Note that for even-n n-gons, with n>=6, the chords from the n corner points do create non-simple intersections.
See A367183 and A366253 for images of the n-gons.

Examples

			The table begins:
3, 24, 153, 588, 1635, 3708, 7329, 13128, 21843, 34320, 51513, 74484, 104403,...
8, 124, 780, 2816, 7480, 16428, 31724, 55840, 91656, 142460, 211948, 304224,...
20, 390, 2370, 8300, 21600, 46770, 89390, 156120, 254700, 393950, 583770,...
42, 939, 5568, 19149, 49242, 105747, 200904, 349293, 567834, 875787, 1294752,...
91, 1932, 11193, 37996, 96915, 206976, 391657, 678888, 1101051, 1694980,...
136, 3512, 20176, 67936, 172328, 366616, 691792, 1196576, 1937416, 2978488,...
288, 5994, 33750, 112716, 284580, 603558, 1136394, 1962360, 3173256, 4873410,...
390, 9455, 53040, 176325, 443750, 939015, 1765080, 3044165, 4917750, 7546575,...
715, 14432, 79761, 263692, 661595, 1397220, 2622697, 4518536, 7293627,...
756, 20712, 115008, 379476, 950340, 2004216, 3758112, 6469428, 10435956,...
1508, 29614, 161538, 530348, 1324960, 2790138, 5226494, 8990488, 14494428,...
1722, 40243, 220024, 721245, 1799434, 3785467, 7085568, 12181309, 19629610,...
2835, 54420, 293985, 960300, 2391675, 5025960, 9400545, 16152360, 26017875,...
3088, 70800, 383904, 1252960, 3117648, 6546768, 12238240, 21019104,...
.
.
.
		

Crossrefs

Cf. A367119 (first row), A367122 (second row), A135565 (first column), A367183 (vertices), A366253 (regions).

Formula

T(n,k) = A367183(n,k) + A366253(n,k) - 1 by Euler's formula.
Conjectures:
T(3,k) = A367119(k) = (9/2)*k^4 + 6*k^3 + (9/2)*k^2 + 6*k + 3.
T(4,k) = A367122(k) = 17*k^4 + 38*k^3 + 37*k^2 + 24*k + 8.
T(5,k) = 45*k^4 + 120*k^3 + 130*k^2 + 75*k + 20.
T(6,k) = (195/2)*k^4 + 285*k^3 + (657/2)*k^2 + 186*k + 42.
T(7,k) = (371/2)*k^4 + 574*k^3 + (1379/2)*k^2 + 392*k + 91.
T(8,k) = 322*k^4 + 1036*k^3 + 1282*k^2 + 736*k + 136.
T(9,k) = 522*k^4 + 1728*k^3 + 2187*k^2 + 1269*k + 288.
T(10,k) = (1605/2)*k^4 + 2715*k^3 + (6995/2)*k^2 + 2050*k + 390.