A367190 Table read by antidiagonals: Place k points in general position on each side of a regular n-gon and join every pair of the n*(k+1) boundary points by a chord; T(n,k) (n >= 3, k >= 0) gives number of edges in the resulting planar graph.
3, 24, 8, 153, 124, 20, 588, 780, 390, 42, 1635, 2816, 2370, 939, 91, 3708, 7480, 8300, 5568, 1932, 136, 7329, 16428, 21600, 19149, 11193, 3512, 288, 13128, 31724, 46770, 49242, 37996, 20176, 5994, 390, 21843, 55840, 89390, 105747, 96915, 67936, 33750, 9455, 715
Offset: 3
Examples
The table begins: 3, 24, 153, 588, 1635, 3708, 7329, 13128, 21843, 34320, 51513, 74484, 104403,... 8, 124, 780, 2816, 7480, 16428, 31724, 55840, 91656, 142460, 211948, 304224,... 20, 390, 2370, 8300, 21600, 46770, 89390, 156120, 254700, 393950, 583770,... 42, 939, 5568, 19149, 49242, 105747, 200904, 349293, 567834, 875787, 1294752,... 91, 1932, 11193, 37996, 96915, 206976, 391657, 678888, 1101051, 1694980,... 136, 3512, 20176, 67936, 172328, 366616, 691792, 1196576, 1937416, 2978488,... 288, 5994, 33750, 112716, 284580, 603558, 1136394, 1962360, 3173256, 4873410,... 390, 9455, 53040, 176325, 443750, 939015, 1765080, 3044165, 4917750, 7546575,... 715, 14432, 79761, 263692, 661595, 1397220, 2622697, 4518536, 7293627,... 756, 20712, 115008, 379476, 950340, 2004216, 3758112, 6469428, 10435956,... 1508, 29614, 161538, 530348, 1324960, 2790138, 5226494, 8990488, 14494428,... 1722, 40243, 220024, 721245, 1799434, 3785467, 7085568, 12181309, 19629610,... 2835, 54420, 293985, 960300, 2391675, 5025960, 9400545, 16152360, 26017875,... 3088, 70800, 383904, 1252960, 3117648, 6546768, 12238240, 21019104,... . . .
Crossrefs
Formula
Conjectures:
T(3,k) = A367119(k) = (9/2)*k^4 + 6*k^3 + (9/2)*k^2 + 6*k + 3.
T(4,k) = A367122(k) = 17*k^4 + 38*k^3 + 37*k^2 + 24*k + 8.
T(5,k) = 45*k^4 + 120*k^3 + 130*k^2 + 75*k + 20.
T(6,k) = (195/2)*k^4 + 285*k^3 + (657/2)*k^2 + 186*k + 42.
T(7,k) = (371/2)*k^4 + 574*k^3 + (1379/2)*k^2 + 392*k + 91.
T(8,k) = 322*k^4 + 1036*k^3 + 1282*k^2 + 736*k + 136.
T(9,k) = 522*k^4 + 1728*k^3 + 2187*k^2 + 1269*k + 288.
T(10,k) = (1605/2)*k^4 + 2715*k^3 + (6995/2)*k^2 + 2050*k + 390.
Comments