A367198 T(n, k) = Sum_{m = 0..n-1} Stirling1(m+1, k)*binomial(n, m)*(-1)^(n + k), where "Stirling1" are the signed Stirling numbers of the first kind.
1, 1, 2, 4, 6, 3, 15, 30, 18, 4, 76, 165, 125, 40, 5, 455, 1075, 930, 380, 75, 6, 3186, 8015, 7679, 3675, 945, 126, 7, 25487, 67536, 70042, 37688, 11550, 2044, 196, 8, 229384, 634935, 702372, 414078, 144417, 30870, 3990, 288, 9, 2293839, 6591943, 7696245, 4886390, 1885065, 463092, 73080, 7200, 405, 10
Offset: 1
Examples
Triangle begins: 1; 1, 2; 4, 6, 3; 15, 30, 18, 4; 76, 165, 125, 40, 5; 455, 1075, 930, 380, 75, 6;
Crossrefs
Programs
-
Maple
T := (n, k) -> local m; add(Stirling1(m+1, k)*binomial(n, m)*(-1)^(n + k), m = 0..n-1): seq(seq(T(n, k), k = 1..n), n = 1..9); # Peter Luschny, Nov 10 2023
-
PARI
T(n,k) = sum(m=0, n-1, stirling(m+1, k)*binomial(n, m)*(-1)^(n+k))
Formula
T(n+1, n) = n^2*(n+1)/2 = A002411(n).
T(n, n-2) = 6*T(n-1, n-3) - 15*T(n-2, n-4) + 20*T(n-3, n-5) - 15*T(n-4, n-6) + 6*T(n-5, n-7) - T(n-6, n-8), for n > 8.
T(n, n-k) = (-1)^k*Sum_{m=0..n-1} Stirling1(m+1, n-k)*binomial(n, m).
Comments