cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A367200 E.g.f. satisfies A(x) = 1/(1 - x*A(x))^(A(x)^3).

Original entry on oeis.org

1, 1, 10, 201, 6216, 261300, 13923762, 899679144, 68368215528, 5975493315264, 590584798045440, 65132133511182408, 7929604511136220536, 1056369806709005923992, 152854816585283562807288, 23873492748049623945947160, 4002988479012229417182249408
Offset: 0

Views

Author

Seiichi Manyama, Nov 10 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (n+3*k+1)^(k-1)*abs(stirling(n, k, 1)));

Formula

a(n) = Sum_{k=0..n} (n+3*k+1)^(k-1) * |Stirling1(n,k)|.

A367201 E.g.f. satisfies log(A(x)) = (exp(x*A(x)) - 1) * A(x)^3.

Original entry on oeis.org

1, 1, 10, 200, 6167, 258607, 13748744, 886397829, 67211684890, 5861684458896, 578088714806497, 63617223837958309, 7728596914020856162, 1027393177458209939977, 148344954037140113652010, 23119776330887635387231580, 3868359765874829925197165527
Offset: 0

Views

Author

Seiichi Manyama, Nov 10 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (n+3*k+1)^(k-1)*stirling(n, k, 2));

Formula

a(n) = Sum_{k=0..n} (n+3*k+1)^(k-1) * Stirling2(n,k).
Showing 1-2 of 2 results.