cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367202 If n = Product(p_i^e_i), a(n) = Sum_{i = 1..k}(rad(n)/p_i)^e_i, where rad is A007947.

Original entry on oeis.org

0, 1, 1, 1, 1, 5, 1, 1, 1, 7, 1, 11, 1, 9, 8, 1, 1, 7, 1, 27, 10, 13, 1, 29, 1, 15, 1, 51, 1, 31, 1, 1, 14, 19, 12, 13, 1, 21, 16, 127, 1, 41, 1, 123, 28, 25, 1, 83, 1, 9, 20, 171, 1, 11, 16, 345, 22, 31, 1, 241, 1, 33, 52, 1, 18, 61, 1, 291, 26, 59, 1, 31, 1
Offset: 1

Views

Author

David James Sycamore, Nov 10 2023

Keywords

Comments

Diverges from A028235 at a(12).

Examples

			a(1) = 0, the empty sum.
rad(6) = rad(2*3) = 6 -->a(6) = (6/2)^1 + (6/3)^1 = 3 + 2 = 5.
rad(12) = rad(2^2*3) = 6 -->a(12) = (6/2)^2 + (6/3)^1 = 9 + 2 = 11.
rad(36) = rad(2^2*3^2) = 6 --> a(36) = (6/2)^2 +(6/3)^2 = 9 + 4 = 13.
rad(40) = rad(2^3*5^1) = 10 -->a(40) = (10/2)^3 + (10/5)^1 = 125 + 2 = 127.
n = 30 = 2*3*5 a squarefree number; a(30) = (30/2) + (30/3) + (30/5) = 15 + 10 +  6 = 31
		

Crossrefs

Programs

  • Mathematica
    Array[Function[{r, w}, Total[Power @@@ Transpose@ {r/w[[All, 1]], w[[All, -1]]}]] @@ {Times @@ #[[All, 1]], #} &@ FactorInteger[#] &, 120] (* Michael De Vlieger, Nov 10 2023 *)
  • PARI
    rad(f) = factorback(f[, 1]);
    a(n) = my(f=factor(n)); sum(i=1, #f~,(rad(f)/f[i,1])^f[i,2]); \\ Michel Marcus, Nov 10 2023

Formula

For n a prime power p^k, a(n) = (p/p)^1 = 1.
For n a squarefree semiprime a(n) = A001414(n).
For p,q distinct primes a(p*q^2) = q + p^2.
For n a squarefree number with prime divisors p_1,p_2..p_k, a(n) = Sum_{i = 1..k}(n/p_i) see Example

Extensions

More terms from Michael De Vlieger, Nov 10 2023