A367209 Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 1 + 4*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 - x - x^2.
1, 1, 4, 2, 7, 15, 3, 18, 38, 56, 5, 35, 116, 186, 209, 8, 70, 273, 650, 859, 780, 13, 132, 629, 1777, 3366, 3821, 2911, 21, 246, 1352, 4600, 10410, 16556, 16556, 10864, 34, 449, 2820, 11024, 29770, 56874, 78504, 70356, 40545, 55, 810, 5701, 25306, 78324
Offset: 1
Examples
First nine rows: 1 1 4 2 7 15 3 18 38 56 5 35 116 186 209 8 70 273 650 859 780 13 132 629 1777 3366 3821 2911 21 246 1352 4600 10410 16556 16556 10864 34 449 2820 11024 29770 56874 78504 70356 405459 Row 4 represents the polynomial p(4,x) = 3 + 18*x + 38*x^2 + 56*x^3, so (T(4,k)) = (3,18,38,56), k=0..3.
Links
- Rigoberto Flórez, Robinson Higuita, and Antara Mukherjee, Characterization of the strong divisibility property for generalized Fibonacci polynomials, Integers, 18 (2018), Paper No. A14.
Crossrefs
Programs
-
Mathematica
p[1, x_] := 1; p[2, x_] := 1 + 4 x; u[x_] := p[2, x]; v[x_] := 1 - x - x^2; p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]] Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]] Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
Formula
p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where p(1,x) = 1, p(2,x) = 1 + 4*x, u = p(2,x), and v = 1 - x - x^2.
p(n,x) = k*(b^n - c^n), where k = -(1/D), b = (1/2)*(1 + 4*x - D), c = (1/2)*(1 + 4*x + D), where D = sqrt(5 + 4*x + 12*x^2).
Comments