A367218 Number of integer partitions of n whose length can be written as a nonnegative linear combination of the distinct parts.
1, 1, 1, 2, 4, 6, 8, 13, 18, 26, 35, 50, 66, 92, 119, 160, 208, 275, 350, 457, 579, 742, 933, 1185, 1476, 1859, 2300, 2868, 3531, 4371, 5343, 6575, 8003, 9776, 11842, 14394, 17351, 20987, 25191, 30315, 36257, 43448, 51753, 61776, 73342, 87192, 103184, 122253, 144211
Offset: 0
Keywords
Examples
The partition (4,2,1) has 3 = (2)+(1) or 3 = (1+1+1) so is counted under a(7). The a(1) = 1 through a(7) = 13 partitions: (1) (11) (21) (22) (32) (42) (52) (111) (31) (41) (51) (61) (211) (221) (321) (322) (1111) (311) (411) (331) (2111) (2211) (421) (11111) (3111) (511) (21111) (2221) (111111) (3211) (4111) (22111) (31111) (211111) (1111111)
Crossrefs
The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
Programs
-
Mathematica
combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]]; Table[Length[Select[IntegerPartitions[n], combs[Length[#], Union[#]]!={}&]], {n,0,15}]
Extensions
a(31)-a(48) from Chai Wah Wu, Nov 15 2023
Comments