cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A367270 Triangle read by rows. T(n, k) = binomial(n, k)*binomial(n - 1, n - k - 1).

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 6, 3, 0, 1, 12, 18, 4, 0, 1, 20, 60, 40, 5, 0, 1, 30, 150, 200, 75, 6, 0, 1, 42, 315, 700, 525, 126, 7, 0, 1, 56, 588, 1960, 2450, 1176, 196, 8, 0, 1, 72, 1008, 4704, 8820, 7056, 2352, 288, 9, 0, 1, 90, 1620, 10080, 26460, 31752, 17640, 4320, 405, 10, 0
Offset: 0

Views

Author

Peter Luschny, Nov 11 2023

Keywords

Examples

			Triangle T(n, k) begins:
  [0] 1;
  [1] 1,  0;
  [2] 1,  2,    0;
  [3] 1,  6,    3,    0;
  [4] 1, 12,   18,    4,    0;
  [5] 1, 20,   60,   40,    5,    0;
  [6] 1, 30,  150,  200,   75,    6,    0;
  [7] 1, 42,  315,  700,  525,  126,    7,   0;
  [8] 1, 56,  588, 1960, 2450, 1176,  196,   8, 0;
  [9] 1, 72, 1008, 4704, 8820, 7056, 2352, 288, 9, 0;
		

Crossrefs

Cf. A088218 (row sums), A367267 (row reversed).

Programs

  • Maple
    T := (n, k) -> binomial(n, k) * binomial(n - 1, n - k - 1):
    # Or:
    T := (n, k) -> if k=0 then 1 elif k=n then 0 else ((n-k)/n)*binomial(n, k)^2 fi:
    seq(seq(T(n, k), k = 0..n), n = 0..9);
  • Mathematica
    A367270[n_,k_]:=Binomial[n,k]Binomial[n-1,n-k-1];
    Table[A367270[n,k],{n,0,15},{k,0,n}] (* Paolo Xausa, Nov 29 2023 *)

Formula

For 0< k < n: T(n, k) = ((n - k) / n)*binomial(n, k)^2.

A367256 a(n) = Sum_{k=0..n} binomial(n, k) * binomial(n - 1, k - 1) * n^(n - k).

Original entry on oeis.org

1, 1, 5, 46, 593, 9726, 192637, 4457580, 117769409, 3492894070, 114790042901, 4137157889316, 162154385331985, 6863637142316332, 311905306734621069, 15140756439172826776, 781693659313991730945, 42759819036520142319270, 2469943332976774829606821
Offset: 0

Views

Author

Peter Luschny, Nov 11 2023

Keywords

Crossrefs

Programs

  • Maple
    a := n -> if n= 0 then 1 else n*n^(n - 1)*hypergeom([1 - n, 1 - n], [2], 1/n) fi:
    seq(simplify(a(n)), n = 0..19);
  • Mathematica
    A367256[n_] := If[n == 0, 1, n*n^(n-1)*Hypergeometric2F1[1-n, 1-n, 2, 1/n]];
    Array[A367256, 25, 0] (* Paolo Xausa, Jan 31 2024 *)

Formula

a(n) = Sum_{k=0..n} A367267(n, k) * n^(n - k).
a(n) = n*n^(n - 1)*hypergeom([1 - n, 1 - n], [2], 1/n) for n > 0.
a(n) ~ exp(2*sqrt(n) - 1) * n^(n - 3/4) / (2*sqrt(Pi)). - Vaclav Kotesovec, Nov 11 2023
Showing 1-2 of 2 results.