A367311 Maximum curvature of the curve (1 - 2^(1-x)) zeta(x) from 0 to 1.
0, 6, 4, 1, 3, 9, 2, 8, 2, 0, 6, 4, 2, 5, 7, 1, 6, 8, 4, 2, 2, 0, 8, 8, 7, 1, 6, 5, 1, 2, 7, 1, 8, 1, 6, 8, 7, 3, 9, 3, 6, 5, 6, 8, 2, 8, 4, 4, 6, 4, 6, 4, 0, 1, 3, 9, 5, 5, 9, 5, 7, 7, 0, 0, 2, 2, 5, 2, 5, 7, 6, 2, 7, 9, 8, 3, 6, 9, 3, 2, 1, 7, 2, 4, 9, 4, 7
Offset: 0
Examples
Maximum curvature = 0.0641392820642571684220887165127181687393..., which occurs at x = 0.6827548440370203586269... .
Programs
-
Mathematica
f[x_] := (1 - 2^(1 - x)) Zeta[x]; c[x_] := Abs[f''[x]]/(1 + f'[x]^2)^(3/2) y = FindMaximum[{c[x], 0 < x < 1}, {x, 1/2}, WorkingPrecision -> 1000] RealDigits[y][[1]][[1]]
Extensions
One initial 0 inserted by Artur Jasinski, Aug 04 2025
Comments