cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A367414 Expansion of (1/x) * Series_Reversion( x * (1-x-x^4/(1-x)^2) ).

Original entry on oeis.org

1, 1, 2, 5, 15, 51, 187, 715, 2800, 11138, 44846, 182476, 749566, 3105575, 12966165, 54505650, 230508612, 980045835, 4186600220, 17960356014, 77343359518, 334217730014, 1448771849516, 6298222363395, 27452466169243, 119949953637406, 525284132440963
Offset: 0

Views

Author

Seiichi Manyama, Jan 26 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x-x^4/(1-x)^2))/x)
    
  • PARI
    a(n) = sum(k=0, n\4, binomial(n+k, k)*binomial(2*n-k, n-4*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/4)} binomial(n+k,k) * binomial(2*n-k,n-4*k).

A367415 Expansion of (1/x) * Series_Reversion( x * (1-x-x^4/(1-x)^3) ).

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 198, 793, 3255, 13529, 56696, 239340, 1017900, 4361840, 18828606, 81833505, 357865215, 1573549667, 6952392450, 30848928525, 137403484655, 614104910096, 2753200345000, 12378494389660, 55799811151140, 252141767612812, 1141894552992368
Offset: 0

Views

Author

Seiichi Manyama, Jan 26 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x-x^4/(1-x)^3))/x)
    
  • PARI
    a(n) = sum(k=0, n\4, binomial(n+k, k)*binomial(2*n, n-4*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/4)} binomial(n+k,k) * binomial(2*n,n-4*k).

A369525 Expansion of (1/x) * Series_Reversion( x / (1+x+x^4/(1+x)) ).

Original entry on oeis.org

1, 1, 1, 1, 2, 5, 11, 21, 40, 84, 190, 429, 944, 2067, 4613, 10505, 24092, 55182, 126444, 291232, 675144, 1571934, 3667774, 8573365, 20090498, 47214710, 111237828, 262587843, 620911708, 1470701157, 3489548683, 8293157045, 19738018740, 47039738570, 112247416400
Offset: 0

Views

Author

Seiichi Manyama, Jan 26 2024

Keywords

Crossrefs

Cf. A367317.

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(serreverse(x/(1+x+x^4/(1+x)))/x)
    
  • PARI
    a(n) = sum(k=0, n\4, binomial(n+1, k)*binomial(n-2*k+1, n-4*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/4)} binomial(n+1,k) * binomial(n-2*k+1,n-4*k).
Showing 1-3 of 3 results.