cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367326 a(n) = Sum_{(n - k)|n} k^2.

Original entry on oeis.org

0, 0, 1, 4, 13, 16, 50, 36, 101, 100, 170, 100, 402, 144, 362, 440, 629, 256, 995, 324, 1266, 920, 962, 484, 2578, 976, 1370, 1576, 2618, 784, 4180, 900, 3477, 2408, 2402, 2840, 7023, 1296, 3026, 3416, 7810, 1600, 8548, 1764, 6786, 7496, 4490, 2116, 14546
Offset: 0

Views

Author

Peter Luschny, Nov 14 2023

Keywords

Crossrefs

Programs

  • Julia
    using AbstractAlgebra
    function A367326(n)
        sum(k^2 for k in 0:n if is_divisible_by(n, n - k))
    end
    [A367326(n) for n in 0:48] |> println
    
  • Maple
    divides := (k, n) -> k = n or (k > 0 and irem(n, k) = 0):
    a := n -> local d; add(`if`(divides(n - d, n), d^2, 0), d = 0..n-1):
    seq(a(n), n = 0..61);
  • Mathematica
    a[0] = 0; a[n_] := DivisorSum[n, (n - #)^2 &]; Array[a, 50, 0]
    (* Amiram Eldar, Nov 14 2023 *)
    a[n_] := Sum[If[Divisible[n, n - k], k^2, 0], {k, 0, n - 1}]
    Table[a[n], {n, 0, 48}]  (* Peter Luschny, Nov 14 2023 *)
  • PARI
    a(n) = if(n == 0, 0, sumdiv(n, d, (n-d)^2)); \\ Michel Marcus, Nov 14 2023
    
  • Python
    from math import prod
    from sympy import factorint
    def A367326(n):
        f = factorint(n).items()
        return n*(n*prod(e+1 for p,e in f) - (prod((p**(e+1)-1)//(p-1) for p,e in f)<<1))+prod((p**(e+1<<1)-1)//(p**2-1) for p,e in f) if n else 0
    # Chai Wah Wu, Nov 14 2023
  • SageMath
    def A367326(n): return sum(k^2 for k in (0..n) if (n-k).divides(n))
    print([A367326(n) for n in range(50)])
    

Formula

a(n) = n^2*A000005(n) - 2*n*A000203(n) + A001157(n) for n >= 1. - Chai Wah Wu, Nov 14 2023