A367368 a(n) = Sum_{(n - k) does not divide n, 0 <= k <= n} k.
0, 1, 2, 4, 5, 11, 9, 22, 19, 31, 33, 56, 34, 79, 73, 84, 87, 137, 102, 172, 132, 179, 201, 254, 168, 281, 289, 310, 294, 407, 297, 466, 399, 477, 513, 538, 433, 667, 649, 680, 590, 821, 663, 904, 810, 843, 969, 1082, 820, 1135, 1068, 1194, 1164, 1379, 1173
Offset: 0
Keywords
References
- Tom M. Apostol, Introduction to Analytic Number Theory, Springer 1976, p. 14.
Programs
-
Julia
using AbstractAlgebra function A367326(n) sum(k for k in 0:n if ! is_divisible_by(n, n - k)) end [A367326(n) for n in 0:54] |> println
-
Maple
# Warning: Be careful when using the deprecated 'numtheory' package. # It might not handle the case n = 0 correctly. A better solution is: divides := (k, n) -> k = n or (k > 0 and irem(n, k) = 0): A367368 := n -> local k; add(`if`(divides(n - k, n), 0, k), k = 0..n): seq(A367368(n), n = 0..61);
-
Mathematica
a[n_]:=n+Sum[k*Boole[!Divisible[n,n-k]],{k,0,n-1}]; Array[a,55,0] (* Stefano Spezia, Nov 15 2023 *)
-
Python
def divides(k, n): return k == n or ((k > 0) and (n % k == 0)) def A367368(n): return sum(k for k in range(n + 1) if not divides(n - k, n)) print([A367368(n) for n in range(55)])
-
Python
from math import prod from sympy import factorint def A367368(n): f = factorint(n).items() return (n*(n+1)>>1)-n*prod(e+1 for p,e in f)+prod((p**(e+1)-1)//(p-1) for p,e in f) if n else 0 # Chai Wah Wu, Nov 17 2023
-
SageMath
def A367368(n): return sum(k for k in (0..n) if not (n - k).divides(n)) print([A367368(n) for n in range(55)])
Comments