A367377 Square array T(n, k), n >= 1, k >= 1, read by antidiagonals, of the least numbers whose symmetric representation of sigma instantiate the unimodal width pattern 1, 2, ..., n, ..., 2, 1 repeated k times separated by instances of width 0.
1, 6, 3, 72, 78, 9, 120, 10728, 1014, 21, 5184, 28920, 1598472, 12246, 81, 1440, 53752896, 6969720, 230297976, 171366, 147, 373248, 4157280
Offset: 1
Examples
The corner of the table begins: -------------------------------------------------------------------- Pattern | once twice 3 times 4 times 5 times 6 times -------------------------------------------------------------------- 1 | 1 3 9 21 81 147 121 | 6 78 1014 12246 171366 1922622 12321 | 72 10728 1598472 230297976 1234321 | 120 28920 6969720 123454321 | 5184 53752896 12345654321 | 1440 4157280 1234567654321| 373248 ... T(3, 4) must have 12 odd divisors and as least number must have 2^3 * 3^2 as a factor in order to create the initial width pattern 1 2 3 2 1 0. Therefore, since the next smallest prime larger than 16 * 9 is 149, T(3, 4) is 2^3 * 3^2 * 149^3 or 2^3 * 3^2 * 149 * p for suitable prime p which leads to p = 21467 < 22201 = 149^2. All other numbers in the table were found by exhaustive computations.
Crossrefs
Programs
-
Mathematica
t249223[n_] := FoldList[#1+(-1)^(#2+1)KroneckerDelta[Mod[n-#2 (#2+1)/2, #2]]&, 1, Range[2, Floor[(Sqrt[8n+1]-1)/2]]] (* row n in triangle of A249223 *) t262045[n_] := Join[t249223[n], Reverse[t249223[n]]] (* row n in triangle of A262045 *) widthPattern[n_] := Map[First, Split[t262045[n]]] umw[n_, k_] := Most[Flatten[Table[Join[Range[n], Range[n-1, 0, -1]], k]]] a367377[{n_, k_}, b_] := NestWhile[#+1&, 1, #
Comments