A367389 Expansion of g.f. A(x) = B(x^2)/(1 - 2*x*B(x^2)) where B(x) = 1 + 2*x*B(x)^3 is the g.f. of A153231.
1, 2, 6, 16, 52, 152, 512, 1568, 5392, 16992, 59232, 190336, 669952, 2183680, 7742464, 25512448, 90974464, 302368256, 1083175424, 3625435136, 13036688384, 43889186816, 158323564544, 535639556096, 1937483350016, 6582584115200, 23865932414976, 81381420826624, 295661476642816
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 2*x + 6*x^2 + 16*x^3 + 52*x^4 + 152*x^5 + 512*x^6 + 1568*x^7 + 5392*x^8 + 16992*x^9 + 59232*x^10 + ... where 1/A(x) = 1 - 2*x - 2*x^2 - 8*x^4 - 56*x^6 - 480*x^8 - 4576*x^10 - 46592*x^12 - ... - 2^n*binomial(3*n-1,n)/(3*n-1) * x^(2*n) - ...
Crossrefs
Cf. A153231.
Programs
-
Mathematica
CoefficientList[1/(-2*x + x/InverseSeries[Series[x - 2*x^3, {x, 0, 30}], x]), x] (* Vaclav Kotesovec, Dec 24 2023 *)
-
PARI
{a(n) = my(A = 1/(-2*x + x/serreverse(x - 2*x^3 + O(x^(n+2))))); polcoeff(A,n)} for(n=0, 30, print1(a(n), ", "))
-
PARI
{a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[#A] = polcoeff( (1 + (m+1)*x*Ser(A))^m / Ser(A)^m , m-1)/m - (m-1)^(m-2) ); A[n+1]} for(n=0, 30, print1(a(n), ", "))
Formula
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x) = B(x^2)/(1 - 2*x*B(x^2)) where B(x) = 1 + 2*x*B(x)^3 is the g.f. of A153231.
(2) A(x) = 1/(1-2*x - Sum_{n>=1} 2^n * binomial(3*n-1,n)/(3*n-1) * x^(2*n) ).
(3) A(x) = 1/(-2*x + x/Series_Reversion( x - 2*x^3 )).
(4) [x^(n-1)] (1 + (n+1)*x*A(x))^n / A(x)^n = n*(n-1)^(n-2) for n > 1.
(5) [x^(n-1)] (1 + n*x*A(x))^n / A(x)^n = -n*(n-2)^(n-2) for n > 1.
(6) [x^(n-1)] (1 + (n-2)*x*A(x))^n / A(x)^n = -n*(5*n-14)*(n-4)^(n-3) for n >= 1.
a(n) ~ (15*sqrt(3/2)/2 + 9 + (15*sqrt(3/2)/2 - 9)*(-1)^n) * 3^(3*n/2) / (sqrt(Pi) * n^(3/2) * 2^(n/2)). - Vaclav Kotesovec, Dec 24 2023