A367394 Number of integer partitions of n whose length is a semi-sum of the parts.
0, 0, 1, 0, 1, 1, 3, 3, 6, 7, 14, 15, 25, 30, 46, 54, 80, 97, 139, 169, 229, 282, 382, 461, 607, 746, 962, 1173, 1499, 1817, 2302, 2787, 3467, 4201, 5216, 6260, 7702, 9261, 11294, 13524, 16418, 19572, 23658, 28141, 33756, 40081, 47949, 56662, 67493, 79639
Offset: 0
Keywords
Examples
For the partition y = (3,3,2,1) we have 4 = 3 + 1, so y is counted under a(9). The a(2) = 1 through a(10) = 14 partitions: (11) . (211) (221) (321) (421) (521) (621) (721) (2211) (2221) (2222) (3222) (3322) (3111) (3211) (3221) (3321) (3331) (3311) (4221) (4222) (32111) (4311) (4321) (41111) (32211) (5221) (42111) (5311) (32221) (33211) (42211) (43111) (331111) (421111) (511111)
Crossrefs
The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum, linear combination, or semi-sum of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free semi-full semi-free
-----------------------------------------------------------
Triangles:
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n], MemberQ[Total/@Subsets[#,{2}], Length[#]]&]], {n,0,10}]
Comments