A367396 Number of subsets of {1..n} whose cardinality is the sum of two distinct elements.
0, 0, 0, 1, 3, 7, 17, 40, 90, 199, 435, 939, 2007, 4258, 8976, 18817, 39263, 81595, 168969, 348820, 718134, 1474863, 3022407, 6181687, 12621135, 25727686, 52369508, 106460521, 216162987, 438431215, 888359841, 1798371648, 3637518354, 7351824439, 14848255803
Offset: 0
Keywords
Examples
The set s = {1,2,3,6,7,8} has the following sums of pairs of distinct elements: {3,4,5,7,8,9,10,11,13,14,15}. This does not include 6, so s is not counted under a(8). The a(0) = 0 through a(6) = 17 subsets: . . . {1,2,3} {1,2,3} {1,2,3} {1,2,3} {1,2,4} {1,2,4} {1,2,4} {1,2,3,4} {1,2,5} {1,2,5} {1,2,3,4} {1,2,6} {1,2,3,5} {1,2,3,4} {1,3,4,5} {1,2,3,5} {1,2,3,4,5} {1,2,3,6} {1,3,4,5} {1,3,4,6} {1,3,5,6} {1,2,3,4,5} {1,2,3,4,6} {1,2,3,5,6} {1,2,4,5,6} {1,3,4,5,6} {2,3,4,5,6} {1,2,3,4,5,6}
Crossrefs
The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum, linear combination, or semi-sum of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free semi-full semi-free
-----------------------------------------------------------
A364534 counts sum-full subsets.
Triangles:
A365541 counts subsets with a semi-sum k.
Programs
-
Mathematica
Table[Length[Select[Subsets[Range[n]],MemberQ[Total/@Subsets[#,{2}],Length[#]]&]],{n,0,10}]
-
Python
from itertools import combinations def A367396(n): return sum(1 for k in range(3,n+1) for w in (set(d) for d in combinations(range(1,n+1),k)) if any({a,k-a}<=w for a in range(1,k+1>>1))) # Chai Wah Wu, Nov 21 2023
Formula
Conjectures from Chai Wah Wu, Nov 21 2023: (Start)
a(n) = 4*a(n-1) - 5*a(n-2) + 4*a(n-3) - 5*a(n-4) + 2*a(n-5) for n > 4.
G.f.: x^3*(x - 1)/((2*x - 1)*(x^4 - 2*x^3 + x^2 - 2*x + 1)). (End)
Extensions
a(18)-a(33) from Chai Wah Wu, Nov 21 2023
a(34) from Paul Muljadi, Nov 24 2023