A367398 Number of integer partitions of n whose length is not a semi-sum of the parts.
1, 1, 1, 3, 4, 6, 8, 12, 16, 23, 28, 41, 52, 71, 89, 122, 151, 200, 246, 321, 398, 510, 620, 794, 968, 1212, 1474, 1837, 2219, 2748, 3302, 4055, 4882, 5942, 7094, 8623, 10275, 12376, 14721, 17661, 20920, 25011, 29516, 35120, 41419, 49053, 57609, 68092, 79780
Offset: 0
Keywords
Examples
For the partition y = (4,3,1) we have semi-sums {4,5,7}, which do not include 3 (the length of y), so y is counted under a(8). The a(1) = 1 through a(8) = 16 partitions: (1) (2) (3) (4) (5) (6) (7) (8) (21) (22) (32) (33) (43) (44) (111) (31) (41) (42) (52) (53) (1111) (311) (51) (61) (62) (2111) (222) (322) (71) (11111) (411) (331) (332) (21111) (511) (422) (111111) (4111) (431) (22111) (611) (31111) (4211) (211111) (5111) (1111111) (22211) (221111) (311111) (2111111) (11111111)
Crossrefs
The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum, linear combination, or semi-sum of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free semi-full semi-free
-----------------------------------------------------------
Triangles:
A365541 counts subsets with a semi-sum k.
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],FreeQ[Total/@Subsets[#,{2}],Length[#]]&]],{n,0,10}]
Comments